Density Functional Theory Models for Radiation Damage*

S.L. Dudarev

EURATOM/CCFE Fusion Association, Culham Center for Fusion Energy, Oxfordshire OX14 3DB, United Kingdom; email: sergei.dudarev@ccfe.ac.uk

Keywords

ab initio models, radiation defects, radiation embrittlement, transmutation, helium, vacancies, self-interstitial atoms, clusters, magnetism, defects, dislocations, radiation effects, alloys, collision cascades, energy losses, fusion reactor materials, fission reactor materials, DFT

Abstract

Density functional theory models developed over the past decade provide unique information about the structure of nanoscale defects produced by irradiation and about the nature of short-range interaction between radiation defects, clustering of defects, and their migration pathways. These ab initio models, involving no experimental input parameters, appear to be as quantitatively accurate and informative as the most advanced experimental techniques developed for the observation of radiation damage phenomena. Density functional theory models have effectively created a new paradigm for the scientific investigation and assessment of radiation damage effects, offering new insight into the origin of temperature- and dose-dependent response of materials to irradiation, a problem of pivotal significance for applications.
1. INTRODUCTION

Neutrons and charged particles produced by nuclear reactions in the fuel assembly of a fission power plant (1, 2) or in the deuterium-tritium plasma of a fusion tokamak device (3) induce significant changes in the physical and mechanical properties of materials. These changes result from the interaction of energetic particles with atoms in the materials. For example, neutrons initiate collision cascades, in which radiation defects are formed. These collision cascade events do not change the chemical composition of reactor materials and result only in the formation of fairly stable and relatively well localized distortions of atomic structure; these are the radiation defects. The defects migrate, react, coalesce, and grow. On the mesoscopic (approximately micrometer) scale, the generation of radiation defects gives rise to a particular type of microstructural evolution, which occurs only in irradiated materials. Such changes in microstructure associated with the evolution of defects are termed the accumulation of radiation damage. If the kinetic energy of incident neutrons exceeds a certain threshold value, specific to a particular nuclear reaction, neutron-induced transmutations may also occur. In contrast to collision cascades, transmutation reactions modify the chemical composition of irradiated materials (4). For example, initially chemically pure tungsten bombarded by 14.1-MeV fusion neutrons transmutes into an alloy containing significant amounts of rhenium, osmium, and tantalum. Transmutations also result in the accumulation of helium and other noble gases in the atomic lattice, stimulating swelling and giving rise to helium embrittlement (3).

Understanding the effect of irradiation on materials requires developing atomic-scale models for radiation defects, which describe how the defects evolve and interact. The treatment of reactions between defects in the atomic lattice is broadly similar to the treatment of chemical reactions between molecules. This similarity stems from the fact that defects can be treated as quasi-particles (5) that are characterized by their position, velocity, mass, and effective mobility.

A collision cascade event initiated by a nuclear reaction between an incident neutron (or an ion) and an atomic nucleus results in the displacement of many thousands of atoms from their equilibrium positions (6). Dynamic time-dependent density functional theory (DFT) simulations of collision cascades have so far been limited to events with relatively low impact energy, and the studies themselves have focused almost exclusively on nonmetals (7–12). At the same time, extensive literature describes applications of the (necessarily) simplified models for interatomic forces to the simulation of large-scale, high-energy collision cascade events (13–17). References 18–20 review the experimental observations of defect production by irradiation.

Given that the science of radiation damage phenomena spans over half a century, why have recent DFT (often also referred to as ab initio) studies proved to be so influential? Two aspects of radiation damage elevated the DFT methods to a position of prominence among other scientific means for the investigation of radiation defects. First, defects formed by irradiation are often very small and hence not readily accessible to a direct experimental observation. Second, the simplified models for interatomic forces used for simulating radiation defects before DFT methods became available appeared to be neither sufficiently accurate nor reliable to serve as a starting point for a multiscale treatment of radiation damage phenomena.

In fact, semiempirical interatomic potentials were never meant to provide the starting point for a full quantitative multiscale treatment of radiation damage. For example, the pioneering atomistic simulations of ion channeling effects in Reference 21 were performed by using an interatomic interaction potential that was not assumed to be capable of describing the elastic properties of the crystal. Still, the qualitative insights gained from simulations of radiation damage effects (13–17) had encouraged scientists to apply semiempirical potentials to modeling defects and dislocations, in other words, to cases that were outside the range of validity of interatomic potentials. The result,
as we now know, proved uncertain; for example, the structure of self-interstitial atom (SIA) defects in body-centered-cubic (bcc) metals predicted by using empirical potentials in the 1980s turned out to be incorrect. The predicted core structure of screw dislocations in the same metals also appeared to be incorrect, as did the nature of short-range interaction between vacancies, which turned out to be qualitatively different from what was later found by using electronic structure–based DFT models. These examples are discussed in detail below. At the same time, there are encouraging cases in which focused effort on the development and testing of interatomic potentials has brought remarkable results. Interatomic potentials for iron developed by Mendelev et al. (22), Ackland et al. (23), and Marinica et al. [described in a review article by Malerba et al. (24)] all proved to be sufficiently accurate in describing the structure of dislocation cores and grain boundaries. These potentials also provided a starting point for the development of potentials for the iron-helium binary system (25), in the treatment of which atomistic simulations play an important part, assisting the understanding of the helium grain boundary embrittlement effect. Despite the fact that none of these potentials reproduces the $\alpha$$-\gamma$ phase martensitic phase transformation, which determines the properties of iron and iron-based alloys at elevated temperatures, the predicted low-temperature atomic structures agree remarkably well with the structures found in DFT simulations. The embedded atom interatomic potential developed for face-centered-cubic (fcc) copper (26) also proved highly accurate, enabling pioneering simulations of interaction between dislocations and stacking fault tetrahedra (27). Still, given that the characteristic temperature ranges describing the response of a material to irradiation depend very sensitively on the energies of defects derived from simulations, it is essential to employ the most quantitatively accurate methods available as a starting point for the analysis of temperature-dependent manifestations of radiation damage effects. It is very fortunate that DFT provides such a starting point.

We begin by reviewing experimental observations of radiation defects. Determining the structure of radiation defects is difficult not only because these defects are small (19), but also because they randomly move during observation. Figure 1 illustrates the latter point, showing that if the size of a defect is smaller than \sim1 nm, it becomes difficult to unambiguously identify the defect’s position in an electron microscope image. This conclusion is supported by a large body of work on in situ electron microscope observation of defects (28–33) and by simulations of electron microscope images (34) that together show that fluctuations of images make it difficult to determine the structure of a defect if its size is in the nanometer size range. Furthermore, in situ observations show that nanoscale radiation defects undergo stochastic thermally activated motion (28, 35), which is further enhanced by the electron beam (36, 37). Other experimental methods, for example, neutron or X-ray diffraction, gather information from fairly large volumes of the material. Interpreting such observations is even more difficult, as the interpretation relies on statistical assumptions about, for example, the orientation of defects, which introduce an extra element of uncertainty into the results.

Atomistic models developed before the publication of the first DFT investigation of radiation defects in iron and Fe-Cu alloys (38) relied on semiempirical parameterizations of interatomic forces (so-called interatomic potentials). An interatomic potential is constructed by using a limited set of parameters characterizing a material, for example, the cohesive energy, elastic constants, and stacking fault energies (39–42). Early attempts to predict the structure of radiation defects using such interatomic potentials—especially the defect structures in which atomic relaxation plays a significant part, such as in the core of a SIA defect—often proved to be incorrect, not only in terms of inaccurately predicted formation and migration energies, but also in terms of incorrectly predicted atomic configurations of defects. DFT calculations have dramatically improved the quality of such predictions, putting simulations of radiation effects on a firm quantitative basis.
Figure 1
A sequence of in situ electron microscope images showing the dynamics of stochastic motion of two prismatic \(b = a/2[11\overline{1}] \) dislocation loops created in nominally pure iron by ultrahigh-voltage electron irradiation prior to observation. The images show that loops perform one-dimensional random Brownian motion in the direction parallel to their Burgers vector \(b \) at \(T = 673 \) K. Arrows indicate the direction of motion of the loops. Observations were performed, by using the \(g = 002 \) diffraction condition at 200-kV accelerating voltage, by Arakawa et al. (28).

2. AB INITIO FORMATION AND MIGRATION ENERGIES OF POINT DEFECTS IN ELEMENTAL SOLIDS

Most DFT calculations of defect structures performed so far were carried out by using well-documented DFT computer programs (for a more comprehensive list of the available DFT codes, see http://www.psi-k.org/codes.shtml), namely CASTEP (see Reference 43 and http://www.castep.org/), VASP (see References 44–46 and http://www.vasp.at/), SIESTA (see Reference 47 and http://icmab.cat/leem/siesta/), PLATO (see Reference 48 and http://www-staff.lboro.ac.uk/~masdk/plato.html), PWSCF (see Reference 49 and http://www.quantum-espresso.org/), and ABINIT (see Reference 50 and http://www.abinit.org/).

We start by considering the most elementary radiation defects, vacancies, and SIAs. Under irradiation, such defects always form in pairs, termed Frenkel pairs, as a result of a process in which an atom is displaced from a lattice site, coming to rest some distance away from its initial position. In such an event, an initially occupied lattice site becomes a vacancy, and the atom that occupied the site becomes embedded in the lattice far away from its original position, forming a SIA defect. Vacancies can also form thermally, for example, through the migration of atoms to
surfaces or grain boundaries (51). For the treatment of equilibrium thermodynamics of defects, the interested reader is referred to References 52 and 53.

2.1. Vacancies

In a DFT calculation, a vacancy defect is formed by removing an atom from a lattice site in a simulation cell and by relaxing the resulting atomic structure. The formation energy of a vacancy is calculated by using the equation

\[E_f(\text{vacancy}) = E_{N-1}(\text{relaxed}) - \left(\frac{N-1}{N} \right) E_N(\text{perfect}), \]

where \(E_{N-1}(\text{relaxed}) \) is the total energy of the simulation cell with one atom removed and \(E_N(\text{perfect}) \) is the energy of an \(N \)-atom cell with no defects. Indexes \(N - 1 \) and \(N \) refer to the total number of atoms in the cell. This equation shows that two separate DFT calculations are required to find the vacancy formation energy. To find a reasonably accurate value of the vacancy formation energy, a relatively modest cell containing fewer than 100 atoms is required.

In bcc metals, relaxation of atomic positions around a vacancy reduces its formation energy by a large fraction of an electron volt in comparison with the energy computed by assuming no atomic relaxation (54, 55). In silicon, atomic relaxation reduces the vacancy formation energy by approximately 1.2 eV, from the unrelaxed value of 4.36 eV to the value of 3.17 eV computed by fully relaxing the positions of atoms surrounding the vacancy site (56). In hexagonal-close-packed (hcp) and fcc metals, atomic relaxation does not have an appreciable effect on \(E_f \) (57, 58), although it does affect the vacancy migration energy \(E_m \). The migration energy corresponds to the top of the energy barrier along a pathway, in the multidimensional space of atomic coordinates, which links atomic configurations corresponding to a vacancy situated at one of the two neighboring lattice sites. A brief but comprehensive review of methods for finding the minimum energy pathways is given in Reference 59. Atomic relaxation reduces the calculated vacancy migration energies in copper and nickel by \(\sim 0.4 \text{ eV} \) (58, 60). We note that the vacancy formation energy in iron is the lowest among all the bcc transition metals (38).

Table 1 gives vacancy formation and migration energies calculated by using DFT for several pure metals and nonmetals. Some of the calculations for fcc metals were performed only recently (206), and there are still many pure elemental materials for which there is no ab initio information available about the vacancy formation and migration energies.

That DFT calculations are able to predict the properties of vacancies in pure materials is very significant. Materials used in structural applications, and even those tested experimentally under well-controlled conditions, contain small amounts of impurities. Impurity atoms, for example, carbon, form bound complexes with vacancies (61), and the effective formation and migration energies of such complexes may differ significantly from the bare values of \(E_f \) and \(E_m \) given in Table 1. The knowledge of bare vacancy formation and migration energies, and the knowledge of the formation and dissociation energies of vacancy-impurity clusters, which can also be derived from DFT (61), has stimulated the development of pioneering quantitative models for microstructural evolution that explicitly take into account interactions between vacancies and impurities (62, 63).

2.2. Self-Interstitial Atom Defects

A SIA defect forms if an extra atom is inserted into the lattice, and the resulting atomic structure is relaxed. A SIA defect is a localized collective many-atom entity that can be treated as a
quasi-particle (5, 81). Calculations predict several local energy minima for a SIA defect, where each minimum corresponds to a different orientation of the defect with respect to the crystal lattice (70). The formation energy of a SIA defect in an elemental system is defined as

\[E_f(\text{self-interstitial}) = E_{N+1}(\text{relaxed}) - \left(\frac{N+1}{N} \right) E_N(\text{perfect}) \]

where \(E_{N+1}(\text{relaxed}) \) is the total energy of a simulation cell containing an extra atom and \(E_N(\text{perfect}) \) is the energy of an \(N \)-atom cell containing no defect. Depending on the initial position of the atom inserted into the lattice, structural relaxation results in different predicted defect configurations.

A SIA defect always involves large relaxation of its atomic environment. For example, the magnitude of inward relaxation of the first-nearest-neighbor shell of atoms around a vacancy in a bcc transition metal does not exceed \(\sim 5\% \) (55). At the same time, the magnitude of elastic strain in the core of a SIA defect in a bcc transition metal often approaches 20\% (70, 81). Because the distortion of the lattice around a SIA defect is larger than that around a vacancy, DFT calculations of formation and migration energies of SIA defects require using larger simulation cells. A convergent calculation may require using a cell containing \(5 \times 5 \times 5 \) or even \(6 \times 6 \times 6 \) unit cells, which in the case of a bcc lattice correspond to 250 or 432 atoms, respectively (see figure 9 of Reference 82). Although such calculations can now be routinely performed by using parallel computers, ab initio data on defect formation and migration energies are still relatively limited. Table 2 gives the formation and migration energies computed for various SIA configurations in a number of metals and silicon. For the ab initio data on SIA defect formation energies in zirconium, we refer the reader to Reference 79. Reference 83 gives a remarkably extensive compilation of data on point defects in tungsten.

Calculations show that in all the close-packed crystal structures, the formation energies of SIA defects are significantly higher than the formation energies of vacancies. This difference is

Table 1 Formation \(E_f \) and migration \(E_m \) energies of vacancies computed by using DFT for several elemental metals and nonmetals\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>(E_f)</th>
<th>(E_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
<tr>
<td>(E_f)</td>
<td>(E_m)</td>
<td></td>
</tr>
</tbody>
</table>
consistent with the significantly larger formation volumes of SIA defects in comparison with the formation volumes of vacancies, confirming that the formation of a SIA defect in a close-packed crystal structure gives rise to a much larger elastic distortion of the lattice in comparison with that of a vacancy (88). Also, the fact that the formation energy of a SIA defect is high is consistent with such defects forming only under irradiation and not thermally [only defects with relatively low formation energies, for example, vacancies, form thermally (51)].

2.3. Defects in Ferromagnetic Iron

DFT calculations (38, 69, 81) show that magnetism has a remarkable effect on the structure of vacancy and SIA defects in iron in comparison with other bcc transition metals (see Figure 2). The formation energy of a vacancy in iron is the lowest among the bcc transition metals, and the atomic structure of a SIA defect in iron, the ⟨110⟩ dumbbell, is different from the linear ⟨111⟩ crowdion configuration that a SIA defect adopts in nonmagnetic bcc transition metals (70, 81, 89). The structure of SIA defect clusters in iron is also anomalous: A 2-SIA defect adopts a triangular configuration (90), and larger clusters form unusual compact configurations, the structure of which is related to the structure of the C15 Laves phase (91) (see Figure 3). No such unusual defect configuration has been found in nonmagnetic bcc transition metals. Another feature characterizing SIA defects in ferromagnetic bcc iron is collective collinear antiferromagnetic ordering of atomic magnetic moments. Antiferromagnetic ordering is particularly strongly pronounced for the Laves phase–related SIA defect clusters (91). Tight-binding calculations (92, 94) exhibit similar patterns of antiferromagnetic ordering of atomic magnetic moments, suggesting that antiferromagnetism is associated with extended collective magnetically ordered electronic states formed in the highly distorted regions of atomic structure around the SIA defects.

3. CLUSTERING OF DEFECTS

Apart from a few remarkable exceptions described below, in all the metals with close-packed crystal structures, radiation defects form clusters. The driving force for clustering in the case of

Table 2 Formation energies E_f of various self-interstitial configurations computed by using DFT for several metals and nonmetals

<table>
<thead>
<tr>
<th></th>
<th>⟨111⟩</th>
<th>⟨110⟩</th>
<th>⟨100⟩</th>
<th>Tetrahedral</th>
<th>Octahedral</th>
<th>E_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>4.66↑</td>
<td>4.45↑</td>
<td>3.94↑</td>
<td>3.75↑</td>
<td>5.04↑</td>
<td>4.26↑</td>
</tr>
<tr>
<td>V</td>
<td>3.37↑</td>
<td>3.14↑</td>
<td>3.65↑</td>
<td>3.48↑</td>
<td>3.92↑</td>
<td>3.57↑</td>
</tr>
<tr>
<td>Nb</td>
<td>5.25↓</td>
<td>5.60↓</td>
<td>5.95↓</td>
<td>5.76↓</td>
<td>5.76↓</td>
<td>5.76↓</td>
</tr>
<tr>
<td>Ta</td>
<td>5.83↓</td>
<td>6.38↓</td>
<td>7.00↓</td>
<td>6.77↓</td>
<td>6.77↓</td>
<td>7.10↓</td>
</tr>
<tr>
<td>Cr</td>
<td>5.66↓</td>
<td>5.68↓</td>
<td>6.64↓</td>
<td>6.19↓</td>
<td>6.19↓</td>
<td>6.72↓</td>
</tr>
<tr>
<td>Mo</td>
<td>7.42↓</td>
<td>7.34↓</td>
<td>7.58↓</td>
<td>7.51↓</td>
<td>9.00↑</td>
<td>8.77↑</td>
</tr>
<tr>
<td>W</td>
<td>9.55↓</td>
<td>9.84↓</td>
<td>11.49↓</td>
<td>11.05↓</td>
<td>11.05↓</td>
<td>11.68↓</td>
</tr>
<tr>
<td>Al</td>
<td>1.95↑</td>
<td>1.86↑</td>
<td>1.57↑</td>
<td>1.790↑</td>
<td>1.790↑</td>
<td>1.978↑</td>
</tr>
<tr>
<td>Ni</td>
<td>4.69↑</td>
<td>4.99↑</td>
<td>4.07↑</td>
<td>4.69↑</td>
<td>4.69↑</td>
<td>4.25↑</td>
</tr>
<tr>
<td>Si</td>
<td>3.84↑</td>
<td>3.80 (hexagonal)</td>
<td>3.85 (caged)</td>
<td>4.07↑</td>
<td>4.07↑</td>
<td>4.8</td>
</tr>
</tbody>
</table>

*Migration energies E_m are given only for the most stable configurations. All values are quoted in electron volt units.
Figure 2
Formation energies of various self-interstitial atom (SIA) defect configurations in body-centered-cubic (bcc) transition metals relative to the formation energy of the ⟨111⟩ crowdion defect configuration (see Reference 81). Note the anomalous pattern of ordering of SIA configurations in ferromagnetic bcc iron. The pattern of ordering of SIA defect energies for each metal correlates well with the metal’s position in the periodic table.

Figure 3
(a) Atomic and collinear magnetic structure of a ⟨110⟩ self-interstitial atom defect in iron simulated by using a 128 + 1 atom cell (38, 69, 81). (b) Atomic and collinear magnetic structure of a IC215 two-self-interstitial atom defect computed by using a 250 + 2 atom cell (91). Colors denote the orientation (up or down) and the magnitude of atomic magnetic moments.
SIA defects comes from the large formation energy of an individual SIA defect; this energy results from the large distortion of the lattice around the defects discussed above. This large distortion is partially compensated if defects form clusters, because the energy of an N-defect cluster is lower than the sum of energies of N individual SIA defects. For example, the elastic energy associated with atomic distortion around a 2-SIA cluster is obviously larger than the elastic energy associated with an individual SIA defect. However, due to the extra relaxation occurring in the core of the defect, the 2-SIA elastic energy is still lower than twice the elastic energy associated with a single SIA. This reduction of energy drives the formation of defect clusters. The energy gain occurring if a single SIA defect joins a cluster increases as a function of the cluster size (84, 95). For example, the energy of a 2-SIA defect cluster in bcc α-Fe is ≈0.4 eV lower than the sum of energies of two separate SIA defects (84). The energy of a 3-SIA cluster is 1.76 eV lower than the sum of energies of three individual SIA defects and is 1.36 eV lower than the sum of energies of a 2-SIA cluster and a SIA defect. The energy released in the process in which a SIA defect joins a 3-SIA cluster, resulting in the formation of a 4-SIA cluster, is 1.58 eV. The energy of a large defect cluster varies as a function of the number of SIA, N, in the cluster as \(E_N \sim N^\beta \), with, from a purely dimensional argument, \(\beta \approx 0.5 \) for the case of a planar cluster (a prismatic dislocation loop) (95). For a spherical defect cluster, the value of \(\beta \) is close to 2/3 (83). The energy gain, per SIA defect, associated with the attachment of a SIA defect to a cluster is given by \(E_{N+1} - E_N - E_1 \). In the limit \(N \gg 1 \), this quantity asymptotically approaches \((dE_N/dN) - E_1 \approx -E_1 \), i.e., minus the formation energy of a SIA defect. Because \(E_1 \) is larger in tungsten than in iron, clusters of SIA defects are more stable in tungsten than in iron.

Similarly, the energy gain associated with the attachment of a vacancy to a large vacancy cluster—whether this cluster is a void or a vacancy dislocation loop—is also close to the formation energy of a vacancy. This simple rule does not apply to small vacancy clusters; for example, in many metals, forming a divacancy results in no energy gain. Becquart & Domain (97) found that two vacancies in tungsten repel each other. Somewhat surprisingly, vacancies in tungsten repel each other particularly strongly if they are in the second-nearest-neighbor position. This finding was confirmed by more recent calculations (83, 98) and by a study of divacancies in the entire group of bcc transition metals (89). The latter study pointed out that short-range interaction between vacancies is mediated primarily by electronic structure effects, not by elasticity. The strength and sign of elastic interaction between vacancies (99) are proportional to a linear combination of elastic constants \(C_{11} - C_{12} - 2C_{44} \), which is negative for iron and tantalum; is positive for vanadium, niobium, chromium, and molybdenum; and nearly vanishes for tungsten. The strength of the elastic interaction between vacancies does not correlate with the position of a metal in the periodic table, whereas interaction energies predicted by DFT calculations (89) do exhibit such a correlation, confirming that short-range interaction between vacancies is dominated by the electronic structure effects, rather than by elastic effects.

The fact that vacancies in tungsten do not form bound configurations is not a tungsten-specific phenomenon. The same applies to the second-nearest-neighbor divacancies in chromium and molybdenum (89). Also, Carling et al. (100) found that vacancies repel each other in fcc aluminum. Repulsion between vacancies is also found in fcc platinum, gold, and iridium. The attractive interaction between vacancies is exceedingly weak in silver, palladium, nickel, and copper (101). In bcc iron, the divacancy binding energy is 0.2 eV (102). That vacancies in many metals do not form bound complexes lowers the probability of spontaneously nucleating a vacancy cluster. A homogeneous cluster nucleation event occurs only if a certain number of vacancies, \(\nu \), spontaneously approach each other and form a bound configuration. The probability of such an event is appreciable only if the critical size of a stable vacancy cluster that can grow further by sequentially attaching individual vacancies from its environment is sufficiently small: \(\nu \sim 2 \). In aluminum the
critical vacancy cluster size is large—ν ≈ 8 (101)—and the probability of nucleating a vacancy cluster is low. This argument illustrates the critical part played by impurity atoms, for example, carbon and helium, that stimulate heterogeneous nucleation of vacancy clusters through the formation of stable vacancy-impurity complexes (83). Alternatively, vacancy clusters may form directly in collision cascades (103, 104). Nucleation of vacancy clusters in collision cascades does not require impurities, and the nucleation rate is proportional to the frequency of cascade events. Clusters of SIA defects also readily form in collision cascades (105).

4. COMPARISON OF DFT CALCULATIONS WITH EXPERIMENTAL OBSERVATIONS

How accurate are the defect formation and migration energies predicted by DFT calculations? Moreover, how useful are the DFT predictions for interpreting experimental information on microstructural evolution of irradiated materials?

To answer these questions, we consider the treatment of resistivity recovery curves in pure iron (106). Resistivity recovery curves describe the gradual recovery of the electrical conductivity of a material that is initially irradiated at a very low temperature and is then relatively slowly heated. Recovery occurs through thermal recombination of radiation defects.

Each type of radiation defect is described by its own characteristic activation energy for migration (for example, DFT predicts that in iron, $E_m \approx 0.34$ eV for a SIA defect and $E_m \approx 0.65$ eV for a vacancy; see Tables 1 and 2). We note that all the DFT calculations for bcc iron were performed in the generalized gradient approximation (GGA) because the GGA correctly predicts the bcc ferromagnetic phase to be the ground state of iron, whereas the local-spin-density approximation fails to do so (107).

The conductivity of irradiated samples increases dramatically at certain characteristic temperatures termed resistivity recovery stages. The experimentally observed temperatures of resistivity recovery stages are well documented (108) and can be compared with the corresponding temperatures derived from DFT calculations combined with Monte Carlo modeling of defect migration. Comparing the predicted and experimentally observed temperatures of resistivity recovery stages, Fu et al. (106) found impressive agreement between the migration energies of defects derived from DFT and those observed experimentally. In this way, DFT analysis has made it possible to fully characterize the dynamics of migration and clustering of radiation defects in pure iron.

The determination of the structure of radiation defects is another example in which DFT shows its high predictive capacity. X-ray diffuse scattering experiments performed in the 1970s suggested that a SIA defect in molybdenum adopts a ⟨110⟩ dumbbell configuration (109). DFT calculations (81, 85, 110) showed that the most stable SIA configuration in molybdenum is not a ⟨110⟩ dumbbell but a ⟨111⟩ crowdion. This finding is indicative of a general trend exhibited by SIA defects in all the bcc transition metals (81) (see also Figure 2). The DFT prediction that the most stable configuration of a SIA defect in molybdenum is a ⟨111⟩ crowdion also explains the unusually low temperature of resistivity recovery stage I in this metal; this low-temperature stage is related to the onset of thermally activated mobility of crowdions (111). DFT successfully resolves the problem of low-temperature resistivity recovery stages present in all the nonmagnetic bcc transition metals; these stages occur due to the formation of highly mobile ⟨111⟩ SIA configurations. Moreover, DFT calculations show that the determination of the ⟨110⟩ dumbbell SIA defect structure from X-ray diffuse scattering data in Reference 109 is inconsistent with other available experimental and theoretical data and is likely incorrect. In fact, a SIA defect in molybdenum, as well as in all the other nonmagnetic transition bcc metals, adopts a ⟨111⟩ configuration rather than a ⟨110⟩ configuration.
Finally, we note a recent DFT-based study of self-diffusion in aluminum performed by Mantina et al. (71). The problem of self-diffusion is fundamentally related to radiation damage because self-diffusion is mediated by vacancies, which in this case are formed thermally, as opposed to being generated by irradiation. DFT calculations allow one not only to evaluate the formation and migration energies of vacancies, but also to calculate the corresponding entropies and to enable comparison between the 0 K DFT data and the data derived from the high-temperature self-diffusion experiments. The excellent agreement between DFT calculations and experimental observations found in Reference 71 illustrates the strong predictive capabilities of ab initio DFT methods.

5. DFT MODELS FOR DISLOCATIONS

Dislocations are the carriers of plastic deformation of crystalline materials. In bcc transition metals, including ferritic-martensitic and ferritic steels, thermally activated mobility of screw dislocations with a Burgers vector \(\mathbf{b} = (a/2)[111] \) controls the observed temperature variation of plastic properties (112, 113). Below a certain temperature, termed the brittle-ductile transition temperature, \(T_{BDT} \) (this temperature is not a material’s property because it depends on the deformation strain rate), a bcc metal subjected to deformation undergoes brittle fracture. If the temperature of the material is higher than \(T_{BDT} \), the mode of deformation is ductile. Experimental observations (114–116) show that fracture of a bcc metal is a thermally activated process and is characterized by a well-defined activation energy \(E_{BDT} \) that—as opposed to \(T_{BDT} \)—is independent of the deformation strain rate. The experimentally observed value of \(E_{BDT} \) for a single crystal is approximately one-half of the formation energy of a double kink on a \(\mathbf{b} = a/2[111] \) screw dislocation (117).

Ventelon and colleagues (118, 119) combined DFT and semiempirical potentials calculations and computed the formation energy of a double kink on a \(\mathbf{b} = a/2[111] \) screw dislocation in bcc iron \(E_{dk}(Fe) = 0.65 \) eV (119). This value agrees well with the experimentally observed activation energy for the brittle-ductile transition, \(E_{BDT} \approx E_{dk}/2 = 0.33 \) eV (114–116). Applying the same rule, which states that the activation energy for the brittle-ductile transition in a single-crystalline bcc metal is close to one-half of the formation energy of a double kink, we find that in tungsten, for which \(E_{BDT} = 1.05 \) eV (114), the double-kink formation energy is \(E_{dk}(W) = 2.1 \) eV. This value exactly matches the low-stress double-kink formation energy of 2.1 eV observed by Brunner (120). Similarly, from the fracture data we find that the double-kink formation energy in vanadium is \(E_{dk}(V) = 0.54 \) eV. A convergent DFT model for a kinked screw dislocation in vanadium or tungsten has not yet been developed.

Both a method for calculating the double-kink formation energy and a statistical model for the nucleation and diffusion of kinks on screw dislocations (121) are required to solve the problem of radiation embrittlement, the central problem of nuclear materials science. Radiation embrittlement of structural (for example, fission reactor pressure vessel) steels (1, 2) is a phenomenon in which \(T_{BDT} \) increases monotonically as a function of irradiation dose (122–124). The necessity for controlling radiation embrittlement is easy to appreciate if one considers how a structural material, performing a certain function in a nuclear engineering system at temperature \(T \), responds to deformation after accumulating a certain irradiation dose \(\phi \). Once the condition \(T = T_{BDT}(\phi) \) is reached as a result of exposure of the material to irradiation, the material becomes brittle, potentially resulting in the loss of structural integrity of the relevant component.

Another issue associated with the structure of screw dislocations in a bcc metal that DFT has recently helped resolve is the configuration of the dislocation core. Whereas the long-range elastic field of a dislocation is well described by elasticity (125), the structure of the dislocation core is not very well known. Simulations performed in the past by using semiempirical interatomic potentials
predicted that the core of a \(\mathbf{b} = (a/2)(111) \) screw dislocation in a bcc metal was degenerate, i.e.,
that its configuration was similar to the configurations shown in figure 12 of Reference 126 and
figure 2 of Reference 127. This has direct implications for dislocation mobility (128); for example,
the hypothesis about the degenerate dislocation core structure implies the occurrence of several
different types of kinks (129). Thermally activated mobility of a screw dislocation with a degenerate
core would then exhibit not one but several different activation energies. In experiments, only
a single unique activation energy for fracture is observed (114–116), suggesting that the core
structure of a screw dislocation is not degenerate.

This assertion agrees with the findings by Ismail-Beigi & Arias (130) and by Frederiksen
& Jacobsen (131), who simulated screw dislocations in various nonmagnetic bcc metals by us-
ing DFT and concluded that “the calculations point to symmetric core structures for all the
studied metals.” Subsequent work (118, 119, 132) showed that the core structure of screw disloca-
tions in ferromagnetic bcc iron is also nondegenerate. Quantum-mechanical tight-binding models
(133–135), parameterized by using DFT data, also predict nondegenerate dislocation cores.

Gilbert, Dudarev, and colleagues (136, 137) identified the origin of, and resolved, the funda-
mental disagreement between the core structures of \(\mathbf{b} = (a/2)(111) \) screw dislocations predicted
by DFT and by semiempirical potentials. To do this, they investigated how the energy of a crystal
varies if a \(\langle 111 \rangle \) atomic row of atoms (such atomic rows, or strings, can be seen in Figure 4; please
see References 136 and 137 for more detail) is translated, as a rigid object, through the crystal.
It turns out that the shape of this energy-string translation curve determines the dislocation core
structure. Figure 4 shows examples of the atomic string energy-displacement curves computed
by using DFT for all the bcc transition metals. According to the analysis presented in References
136 and 137, if a \(\langle 111 \rangle \) string energy-displacement curve derived from a semiempirical potential
matches the corresponding DFT curve, the core of a \(\mathbf{b} = (a/2)(111) \) screw dislocation is nonde-
generate (136, 137). All the semiempirical potentials developed by using the criterion described in
References 136 and 137 predict nondegenerate core structures of \(\mathbf{b} = (a/2)(111) \) screw
dislocations.

Concluding this section, we note that Itakura et al. (138) recently published an illuminating
DFT study of screw dislocation mobility in iron. These researchers also found a unique minimum
energy pathway for screw dislocation migration, with no change in the core structure. Recent
DFT simulations of screw dislocation mobility in nonmagnetic bcc transition metals show that the
transition pathways for dislocation migration are broadly similar to those characterizing bcc iron.

6. RADIATION DEFECTS IN ALLOYS

There is an extensive literature on the application of DFT to the analysis of structural stability
and phase transformations in alloys (see, e.g., References 139–141). At the same time, relatively
little is known about the structure of radiation defects in alloys. Applying DFT to alloys is difficult
because an alloy is a complex statistical object for which a certain chemical composition can be
realized with many possible atomic configurations. The structure of a defect then depends on the
choice of both the alloy atomic configuration and the defect site. Figure 5 shows how strongly
the formation energy of a vacancy fluctuates as a function of its lattice site in bcc W-Ta alloys
(98). Figure 5 also shows that the formation energy of a defect in an alloy is a relatively ill-defined
quantity because this energy is sensitive to the local atomic environment. Strongly fluctuating
defect formation and migration energies represent the defining feature of an alloy as opposed to
a pure material.

In the context of DFT studies of radiation defects, Fe-Cr binary alloys have attracted the great-
est attention because (a) iron and chromium are the main constituting elements of ferritic steels
Figure 4

(a) The atomic structure of a \(b = (a/2)(111) \) screw dislocation. Such dislocation can be created by rigidly displacing the \(<111> \) strings of atoms in the direction parallel to the axes of the strings (see References 136 and 137). (b) Density functional theory (DFT) calculations show how the energy of a crystal varies if a \(<111> \) string of atoms is displaced through the lattice in the direction parallel to the string itself (111). If the shape of the energy-displacement curve derived from a semiempirical potential matches the corresponding DFT curve shown in this figure, the core of a \(b = (a/2)(111) \) screw dislocation is nondegenerate.

and (b) Olsson et al. (142, 143) discovered a magnetic anomaly in the enthalpy of formation of Fe-Cr alloys. DFT calculations show that, in the low-chromium concentration limit, the proximity of chromium atoms does not significantly affect the vacancy formation energy. At the same time, SIA defects interact strongly with chromium atoms (144, 145). Defect migration pathways in Fe-Cr alloys are fairly complex, with activation energies for migration of a SIA defect fluctuating between 0.3 and 0.6 eV (146). In contrast, in pure iron, thermally activated migration of a SIA defect is characterized by a unique activation energy of 0.34 eV (69, 146). A comprehensive investigation of statistical aspects of defect formation and migration in Fe-Cr alloys by Terentyev et al. (147) showed that, in comparison with pure iron, vacancy migration energies fluctuate and vary between 0.2 eV and 1 eV. Strongly fluctuating vacancy migration energies are found not only in Fe-Cr alloys (148) but also in tungsten alloys (see figure 16 of Reference 149). Pareige et al. (150) explored the dynamics of microstructural evolution and phase decomposition of concentrated Fe-Cr alloys, taking into account the effect of a locally fluctuating atomic environment on vacancy migration.
Figure 5
Fluctuating vacancy formation energies computed for the ground-state intermetallic structures of W-Ta and W-V body-centered-cubic binary alloys (see Reference 98).

The magnetic anomaly of the heat of formation of Fe-Cr alloys was discovered by using a simplified model for the alloy, in which fluctuations of the local atomic environment were treated in the mean-field coherent potential approximation (CPA) (142, 143). This approximation is similar to the optical potential approximation used in the statistical theory of scattering (151, 152). CPA was recently also applied to modeling vacancies in ternary Fe-Cr-Ni alloys (153) in the 8–20-at% Ni and 12–24-at% Cr composition range, assuming a paramagnetic fcc crystal structure. The study highlighted the sensitivity of the vacancy formation energy to the chemical composition of the alloy in the vicinity of the (12% Ni, 18% Cr) composition point.

The occurrence of a magnetic anomaly in the heat of formation of Fe-Cr alloys was confirmed by non-CPA DFT calculations (93, 154). Martinez et al. (155) performed an extensive study of vacancy-mediated phase decomposition occurring during aging of Fe-Cr alloys, in which DFT calculations were used for evaluating the transition probabilities of thermally activated vacancy hopping events. Tucker and colleagues (77, 78, 156) used DFT to investigate, for the first time, vacancy-mediated diffusion in ternary Fe-Cr-Ni alloys. Klaver et al. (157) estimated the strength of interaction between radiation defects and the solute atoms in dilute fcc Fe-Cr-Ni alloys, taking constrained (and otherwise unstable) fcc iron as a reference structure. They found that dilute fcc Fe-Cr-Ni alloys exhibit no magnetic anomalies with regard to the properties of defects formed in these alloys. In accord with the earlier work by Tucker et al. (77), Klaver et al. (157) found that chromium was the fastest diffusing element, whereas nickel was the slowest. This finding agrees with experimental information on radiation-induced segregation in steels (158).

By using DFT calculations, it is now possible to perform comprehensive screening of solute elements in terms of their interaction with defects in metals. Olsson et al. (159) and Gorbatov et al. (160) carried out ab initio studies of interaction between (a) vacancies and SIAs and (b) individual solute atoms in the matrix of ferromagnetic bcc iron and concluded that magnetism has a significant effect on the strength of defect–solute atom interaction. Parameters of vacancy–solute atom interactions derived from ab initio calculations provide input for models describing microstructural evolution of alloys (161, 162).
7. INTERACTION OF RADIATION DEFECTS WITH CARBON, NITROGEN, AND HELIUM

If one takes a naive view of the radiation damage problem, a tempting line of argument would be first to simulate defect formation and migration in pure materials; then to achieve agreement between predictions and experiment; and finally to study more complex cases, including alloys, steels, composite materials, and nanostructural materials. In practice, this is not a viable strategy, and it fails for a surprisingly simple reason: Vacancies, SIA defects, and clusters of radiation defects strongly interact with impurities, which are always present in a material. DFT calculations show that impurities form fairly dense atmospheres around radiation defects, especially vacancies, even if the material is nominally pure. The concentration of impurities at a certain distance from a defect is given by the following equation, in atom-per-lattice-site units,

\[c = \frac{c_0 \exp \left(-\frac{U}{k_B T} \right)}{1 + c_0 \left[\exp \left(-\frac{U}{k_B T} \right) - 1 \right]} , \]

where \(U \) is the energy of interaction between an impurity and a defect, \(c_0 \) is the average concentration of impurities per lattice site in the material far away from the defect, and \(T \) is the absolute temperature. For \(c_0 = 10^{-6} \), \(U = -0.65 \text{ eV} \) [the energy of interaction between a vacancy and a carbon atom in bcc iron (164)], and \(T = 500 \text{ K} \), we find that \(c \approx 0.78 \). In other words, the concentration of impurities per lattice site in the vicinity of a defect is close to unity. This estimate shows that a vacancy can readily form a bound configuration with a carbon atom, even if the average bulk concentration of carbon atoms in iron is as low as \(c_0 = 10^{-6} = 1 \text{ appm} \).

DFT calculations provide the means for evaluating not only the energy of interaction between radiation defects and impurities, but also various activation energies characterizing reaction rates. Domain and colleagues (61, 165, 166) carried out a pioneering ab initio study of interaction between radiation defects and carbon and nitrogen impurities. Further work by Först et al. (164), Fu et al. (167), and Ohnuma et al. (168) broadly confirmed the findings of Domain et al. (61) and improved the accuracy of predicted binding and activation energies. Calculations show that the most energetically stable configurations of vacancies and carbon atoms in iron are the V-C\textsubscript{2} and V-C\textsubscript{3} complexes (167, 168), whereas the most stable vacancy-nitrogen configuration is V-N\textsubscript{2} (168). DFT calculations performed for tungsten (169, 170) showed that binding between vacancies and impurities in tungsten is stronger than in iron. For example, a V-C complex in tungsten has a binding energy of 1.39 eV (169) [Liu et al. (170) found an even higher value of 1.93 eV], as opposed to a binding energy of 0.65 eV in iron (164, 171). The binding and activation energies calculated by using ab initio methods provide input for kinetic Monte Carlo models (171, 172) that describe the dynamics of evolution of defect-impurity complexes. The accuracy of DFT input is now sufficient to enable meaningful interpretation of experimental data on resistivity recovery in iron (106) and in Fe-Cr alloys (173), including the effect of carbon impurities on vacancy migration (171, 172).

One of the most spectacular findings illustrating the role played by impurities in microstructural evolution of irradiated materials is the discovery of the effect of carbon impurities on helium diffusion and desorption (62, 63, 174, 175). Initially (62), helium desorption curves were interpreted under the assumption that experimental observations could be matched by a microstructural evolution model that took into account reactions between radiation defects and helium in pure iron. Researchers soon discovered that to match observations it was necessary to amend certain critical energy parameters of the model in comparison with DFT data. Further work (63, 174, 175) unambiguously established, by means of more extensive DFT analysis, that to achieve agreement between theoretical predictions and experimental observations it was necessary to take into account the effect of carbon on the reaction rates.
A helium impurity produced by transmutation under neutron irradiation (3, 4) initially occupies an interstitial lattice site and rapidly diffuses through the lattice with an activation energy (in iron and tungsten) of \(\sim 0.06 \) eV (176, 177), eventually forming a helium-vacancy complex (178–181). The binding energy of a helium-vacancy complex is high, varying from 1.2 eV in vanadium to 5 eV in tungsten (181). Alternatively, helium atoms migrating through the lattice may get trapped at a grain boundary, containing vacancy-like sites that are characterized by appreciable local free volume (182). The strength of helium binding to grain boundaries is comparable to the strength of helium binding to vacancies. Magnetism of the host metal is of no significance as far as helium defects are concerned (176, 183), as opposed to the strong effect of magnetism on SIA defects (81) and dislocations (184).

Interstitial helium atoms in tungsten and in iron spontaneously form clusters (177, 180). Clustering occurs because the total energy of a helium cluster is lower than the sum of energies of individual interstitial helium atom defects. In other words, the driving force for clustering of helium atom defects is the same as the driving force for clustering of SIA defects. The formation volume of an interstitial helium atom defect (180, 185) is almost an order of magnitude larger than the formation volume of a SIA defect (38). The formation volume (per helium atom) of a helium cluster is smaller than the formation volume of an individual interstitial helium atom, suggesting that the reduction of elastic energy drives helium clustering.

The fact that the formation volume of a SIA defect is smaller than the formation volume of an interstitial helium atom defect gives rise to an unusual mode of relaxation of large helium atom clusters. Large helium clusters are able to reduce their total energy by spontaneously creating Frenkel pairs, ejecting SIAs and retaining vacancies (180). In contrast, a single substitutional helium defect is unstable with respect to its interaction with a SIA, as the recombination reaction \(\text{He}_{\text{sub}} + \text{SIA} \rightarrow \text{He}_{\text{int}} \) is energetically unfavorable (180). The optimal ratio of helium atoms to vacancies in a \(\text{He}_{n} _V_{m} \) cluster is close to \(n/m \approx 1.3 \) (180). This estimate also agrees with atomistic simulations of collision cascades (186).

Concluding this section, we note that the average concentration of helium produced by transmutation reactions in the bulk of neutron-irradiated materials is never very high; it does not exceed \(\sim 1,000 \) appm in iron and steels and \(\sim 35 \) appm in tungsten (3, 4). The migration of helium to grain boundaries—where its concentration may reach a critical level, giving rise to grain boundary decohesion (187)—represents a critical stage of the helium embrittlement problem (3).

8. FINITE-TEMPERATURE EFFECTS AND TIME-DEPENDENT AND LARGE-SCALE MODELS

The above discussion shows that it is now possible to compute energies of various defect configurations, including configurations involving several interacting defects, at a high level of accuracy approaching 0.1 eV. Given that large-scale computer facilities are now readily available at almost any university or research laboratory worldwide, performing large-scale DFT calculations has become a relatively routine procedure. To where do these developments shift the focus of research in nuclear fission and fusion materials?

First, most of the DFT computer programs evaluate the energies, and not the free energies, of defect structures. Free energies are required for assessing the thermal stability of defects, and even the stability of alloy phases themselves, at elevated temperatures. The need to extend the DFT methodology to finite temperatures was recently highlighted in the context of application of ab initio models to the development of advanced steels (188). Figure 6 illustrates this point, showing the contribution of electronic (magnetic fluctuations) and phonon entropies to the free-energy difference between bcc and fcc phases of iron (189). Figure 6 also shows that, when we...
Figure 6

(a) (Top) The difference between the energies of face-centered-cubic (fcc) and body-centered-cubic (bcc) phases. (Middle) The free-energy difference between bcc and fcc phases, shown separately for the electronic (magnetic) and phonon degrees of freedom. (Bottom) The total electronic and phonon free-energy difference between fcc and bcc phases. The inset shows a magnified part of the curve exhibiting the α-γ phase transition. The data, in units of meV atom\(^{-1}\), are from Reference 189. (b) The Curie temperatures of several Fe-Cr alloys computed by using magnetic cluster expansion. The figure shows that chromium clustering in a Fe-25%Cr alloy results in the Curie temperature of the alloy increasing by more than 150 K (190). Adapted with permission from Lavrentiev et al. (190). Copyright 2011, American Institute of Physics.

compare a random Fe-Cr alloy with an alloy of the same composition containing chromium clusters, the microstructure of an alloy influences its macroscopic magnetic properties, e.g., the Curie temperature, which increases by more than 150 K due to the precipitation and growth of chromium clusters (190).

Second, the size of atomic systems accessible to DFT analysis is in most cases too small. Although in principle one can discuss applications of DFT to systems containing thousands of atoms, in practice most of the calculations are carried out by using supercells containing no more than \(\sim 500\) atoms. To study atomic configurations involving thousands of atoms, it is necessary to use model Hamiltonians, parameterized by using DFT. For example, the calculations illustrated in Figure 6 were performed for cells containing many thousands of atoms by using a Heisenberg-Landau Hamiltonian (191, 192) parameterized via the use of DFT data.

Third, DFT calculations are now expected to provide a starting point for the development of large-scale dynamic models, for example, molecular dynamics, in which interatomic interaction...
Figure 7
Snapshots illustrating application of spin-lattice dynamics simulations (194, 197) to modeling finite-temperature atomic and magnetic dynamics in iron. (a) Body-centered-cubic (bcc) iron at $T = 0$ K, at which magnetic moments are ordered ferromagnetically. (b) Bcc iron at $T = 300$ K, at which atoms are randomly displaced from equilibrium lattice positions and magnetic moments fluctuate around the average direction of magnetization. Spin-lattice dynamics simulations were performed by using 54,000 atom cells with periodic boundary conditions (see References 194 and 197).

potentials are fitted to DFT data, often with remarkable success (193). In the case of bcc iron, for which fairly accurate nonmagnetic interatomic potentials for molecular dynamics simulations have been developed, we still face the challenge of developing a dynamic model for the α-γ phase transition. Such a model necessarily requires treating both the dynamics of atoms and atomic magnetic moments (194–197) and hence going beyond conventional molecular dynamics. Spin-lattice dynamics simulations, treating the motion of atoms and evolution of atomic magnetic moments, illustrated in Figure 7, should be able to describe the α-γ transition, as well as the changes in the relative stability of defects and dislocations near the transition (184, 198).

Finally, the treatment of the interaction between ions and electrons requires taking into account the fast exchange of energy between ionic and electronic degrees of freedom (199) and—in the case of magnetic metals—between ionic, electronic, and magnetic (200) excitations. This energy exchange is a quantum dissipative process and can be treated by using the notion of dynamic structure factors used in the theory of scattering of fast electrons by crystals (201, 202). Here, DFT calculations should provide the means for evaluating, at a quantitative level of accuracy, the rate of energy losses of fast ions. Whereas it is now possible to derive fairly accurate estimates for the energy loss rate in the limit of high velocity of ions (17), the treatment of energy losses and energy exchange between ions and electrons in the limit of low ion velocity remains an important outstanding issue that has attracted significant attention only recently (203–205).

Ab initio methods have now advanced far enough to enable DFT calculations of free energies; DFT parameterization of large-scale atomistic models, including molecular and spin-lattice dynamics; and the application of DFT to the treatment of energy losses, energy exchange, and relaxation of electronic, magnetic, and atomic degrees of freedom. Addressing such issues will
enable predictive multiscale modeling of radiation damage effects, matching the needs of fission and fusion nuclear materials development and materials engineering.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

The author gratefully acknowledges discussions with I.A. Abrikosov, K. Arakawa, C.S. Becquart, C. Domain, C.-C. Fu, A.P. Horsfield, M.Y. Lavrentiev, P.-W. Ma, M.C. Marinica, D. Mason, D. Nguyen-Manh, G.R. Odette, P. Olsson, S.G. Roberts, A.V. Ruban, A.P. Sutton, F. Willaime, C.H. Woo, and S.J. Zinkle. This work, partly funded by the European Communities under the contract of Association between EURATOM and the Culham Centre for Fusion Energy (CCFE), was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also partly funded by the Research Councils UK (RCUK) Energy Program under grant EP/I501045 under program grant EP/H018921/1 “Materials for Fission and Fusion Power,” the EURATOM staff mobility program, and the Engineering and Physical Sciences Research Council (EPSRC) via program grant EP/G050031.

LITERATURE CITED

54 Dudarev

60 Dudarev
Contents

Computational Materials (Richard LeSar & Simon Phillpot, Keynote Topic Editors)

- Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials
 Marcus Müller and Juan J. de Pablo .. 1

- Density Functional Theory Models for Radiation Damage
 S.L. Dudarev .. 35

- Electronic-Structure Theory of Organic Semiconductors: Charge-Transport Parameters and Metal/Organic Interfaces
 Veaceslav Coropceanu, Hong Li, Paul Winget, Lingyun Zhu, and Jean-Luc Brédas 63

- Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale
 Ingo Steinbach .. 89

- Reactive Potentials for Advanced Atomistic Simulations
 Tao Liang, Yun Kyung Shin, Yu-Ting Cheng, Dundar E. Yilmaz, Kertbik Guda Vishnu, Osvalds Verners, Chenyu Zou, Simon R. Phillpot, Susan B. Sinnott, and Adri C.T. van Duin .. 109

- Simulating Mechanical Behavior of Ceramics Under Extreme Conditions
 I. Szlufarska, K.T. Ramesh, and D.H. Warner 131

- Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective
 Aleksandr Chernatynskiy, Simon R. Phillpot, and Richard LeSar 157

Modern Optical Microscopy Techniques in Materials Research (Venkatraman Gopalan, Keynote Topic Editor)

- Nanoscale Hard X-Ray Microscopy Methods for Materials Studies
 Martin Holt, Ross Harder, Robert Winarski, and Volker Rose 183

- Nonlinear Optical Microscopy of Single Nanostructures
 Libai Huang and Ji-Xin Cheng ... 213
Real-Time, Subwavelength Terahertz Imaging
 F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka .. 237

Superresolution Multidimensional Imaging with Structured Illumination Microscopy
 Aurélie Jost and Rainer Heintzmann ... 261

Vesicle Photonics
 A.E. Vasdekis, E.A. Scott, S. Roke, J.A. Hubbell, and D. Psaltis 283

Current Interest

Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing
 Radislav Potyrailo and Rajesh R. Naik .. 307

Electroplating Using Ionic Liquids
 Andrew P. Abbott, Gero Frisch, and Karl S. Ryder .. 335

Engineering Crystal Morphology
 Presbit Dandekar, Zabin B. Kuvadia, and Michael F. Doberty 359

Flexoelectric Effect in Solids
 Pavlo Zubko, Gustau Catalan, and Alexander K. Tagantsev 387

Mesoscale Domains and Nature of the Relaxor State by Piezoresponse Force Microscopy
 V.V. Shvartsman, B. Dkhil, and A.L. Khokhin ... 423

Nanowire Heterostructures
 Jerome K. Hyun, Shixiong Zhang, and Lincoln J. Lauhon 451

Phosphors for Solid-State White Lighting
 Nathan C. George, Kristin A. Denault, and Ram Sesbadri 481

Polymer Electrolytes
 Daniel T. Hallinan Jr. and Nitash P. Balsara ... 503

Templated Chemically Deposited Semiconductor Optical Fiber Materials
 Justin R. Sparks, Pier J.A. Sazio, Venkatraman Gopalan, and John V. Badding .. 527

Water Vapor–Mediated Volatilization of High-Temperature Materials
 Peter J. Meschter, Elizabeth J. Opila, and Nathan S. Jacobson 559

The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials
 Ingmar Schoen, Beth L. Pruitt, and Viola Vogel .. 589