

Steve Roberts
University of Oxford

MRF meeting – CCFE - 7th July 2015

Background

- Establishment of National Nuclear User Facility for accessible study of active materials
- Initiative within Bristol-Oxford NRC to retain ex-Magnox reactor steel pressure vessel surveillance specimens
- Specimens of known pedigree with up to 40 years of service exposure
- Materials well suited for use in future university-based research programmes

NNUF-IMAG

- A "working group" of NNUF
- Current committee:
 - (co-chair) Peter Flewitt University of Bristol
 - (co-chair) Steve Roberts University of Oxford
 - Chair of NNUF, currently Robin Grimes Imperial College, FCO
 - NIRO representative, currently Andrew Brown
 - NDA representative, currently Beth Ripper
 - CCFE representative, currently Martin O'Brien
 - NNL representative, currently Dominic Rhodes
 - University representative, currently Simon Pimblott University of Manchester.

UK Irradiated Materials Archive Magnox steel vessels – operating periods

Station	RPV	Start-up date	Closure date
Berkeley	Steel	1962	1989
Bradwell	Steel	1962	2002
Dungeness A	Steel	1965	2006
Hinkley Point A	Steel	1965	1999
Trawsfynydd	Steel	1965	1991
Sizewell A	Steel	1966	2006
Oldbury	Concrete	1967	2012
Wylfa	Concrete	1971	

Magnox steel vessels – nominal compositions

- Design and construction standard
 - Non-nuclear BS1500 Class 1
- RPV materials
 - Plain carbon-manganese steel plates and forgings
 - Manual metal arc (MMA) or automatic submerged arc (SAW) welds

Composition /	wt%		

•					
С	Mn	Si	S	P	Cu

	С	Mn	Si	S	Р	Cu
Plate	0.09-0.17	1 0/1-1 32	0.10-0.60	0.02-0.04	0.01-0.04	0.03-0.15

Plate	0.09-0.17	1.04-1.32	0.10-0.60	0.02-0.04	0.01-0.04	0.03-0.15

Forging	0.18	1.30	0.36	0.024	0.024	0.10

roigilig	0.10	1.50	0.50	0.024	0.024	0.10
MMA	0.086	0.91	0.91	0.022	0.025	0.08

IVIIVIA	0.080	0.91	0.91	0.022	0.025	0.08
SAW	0.088	1 49	1 49	0.037	0.031	0.23

Magnox steel vessels – operating conditions

- Magnox RPVs experienced a wide range of irradiation temperatures, neutron doses and neutron energy spectra
- Surveillance schemes were designed to cover this range

Withdrawn periodically

Canister location	Irradiation temperature /°C	Dose rate /dpa.s ⁻¹ x10 ¹³
Above core	330-360	3.2-4.9
Side core	198-355	7.3-26
Subcore	165-223	0.94-49

Magnox specimens

- Specimen listing has been evaluated
 - Composition
 - Charpy and tensile specimens with linked test data
 - More than 8000 specimens
 - Plate material
 - Forged material
 - Manual metal arc welds
 - Irradiation temperatures 170 360°C
 - Doses unirradiated plus irradiated, range 10 to 400 x10⁻⁵ dpa

Magnox specimen - selection

- Specimens are distributed in cans within overpacks
- Currently stored at Sellafield
 - Well-documented but no system to what is where
- "1st division" specimens
 - kept / tested below 50°C after irradiation
 - ~500 specimens
- "2nd division" specimens
 - kept / tested below 100°C after irradiation
 - ~150 specimens

Graphite reactor core

- In addition there are graphite reactor core samples
- Pile Grade A graphite reactor core bricks

Graphite core

- Measurement scheme made provision for property changes
 - Graphite samples inserted in special reactor core channels were withdrawn for testing at approved intervals
 - Irradiated samples trepanned from individual core bricks
 - A large number of unirradiated samples of graphite representative of the individual reactor cores
 - Measure of properties
 - Physical
 - Chemical
 - Mechanical
 - Up to 40 years of service exposure

Other specimens for inclusion in Archive?

- Graphite
 - Database of AGR archive materials being compiled
- Dounreay fast reactor components
 - Status not yet clear
- Tungsten
 - ISIS targets being evaluated
- Anything else!
 - Suggestions sought

Next steps

- Following NDA clearance, make Magnox specimen list available
 - Via NNUF website
- A virtual (distributed) or physical (centralised) archive?
 - Virtual Low initial cost, continuing moderate storage costs, access to chosen specimens difficult and repeatedly expensive
 - Physical High initial cost (~£10M), building and unpacking/sorting, continuing moderate storage costs, only pedigree specimens, access to chosen specimens much easier
- Researchers to decide value for future research projects using available specimens
 - How useful will the archive be?
 - What could be added to it?

Further information

- Contacts
 - steve.roberts@materials.ox.ac.uk
 - peter.flewitt@bristol.ac.uk
- Website
 - NNUF website: www.nnuf.ac.uk
- Many thanks to Malcolm Wootton, Magnox Limited, for maintaining and making available the Magnox RPV materials database