
PHYSICS OF PLASMAS 13, 062502 �2006�

Downl
Toroidal and poloidal flows in single-fluid and two-fluid tokamak equilibria
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Toroidal flow velocities of the order of the local sound speed and poloidal flows exceeding
theoretical predictions have been observed in several tokamaks. Steady toroidal and poloidal flow
effects are studied using dissipationless single-fluid and two-fluid theory, with electron inertia
neglected in the latter case. An exact analytic treatment of the two-fluid system, with the electron
and ion temperatures both assumed to be flux functions and ion poloidal flows neglected, reveals a
much wider class of rotation profiles than those corresponding to rigid body rotation of flux
surfaces, which is required by ideal magnetohydrodynamics �MHD�. A generalized expression is
obtained for the variation of the density on a flux surface in the presence of flows, and a relation is
established between the rotation and temperature profiles that makes it possible to test
experimentally the assumption of rigid body rotation. Relaxing the assumption that ion temperature
is a flux function leads to a still wider class of possible profiles. It is shown that ion momentum
balance in the absence of ion poloidal flows implies a Grad-Shafranov equation that is structurally
similar to the standard ideal MHD form of this equation. Leading order ion poloidal flow corrections
to the Grad-Shafranov equation are also computed. �DOI: 10.1063/1.2205189�
I. INTRODUCTION

Tokamak plasma equilibria are traditionally modeled by
equating the pressure gradient and Lorentz force terms in the
magnetohydrodynamic �MHD� momentum equation, with
inertial terms associated with toroidal or poloidal flows as-
sumed to play no significant role. However, toroidal flow
velocities comparable to or exceeding the local sound speed
have recently been observed in the Mega-Ampère Spherical
Tokamak �MAST�;1 toroidal flows with sonic Mach numbers
approaching unity have also been reported in DIII-D,2 the
National Spherical Torus Experiment �NSTX�3 and the Joint
European Torus �JET�.4 In this regime the inertial term in the
MHD momentum equation is not negligible compared to the
pressure gradient term, and one would therefore expect the
equilibrium to be significantly modified. In the case of
MAST, the discharges with the most rapid toroidal flows are
heated by neutral beams injected counter to the plasma cur-
rent direction. In such circumstances a high proportion of the
beam ions are lost promptly, leading to the formation of large
radial electric fields and hence rapid toroidal rotation.5 Mea-
surements of carbon impurity ions in the Tokamak Fusion
Test Reactor �TFTR�6 and, more recently, in DIII-D2 and
JET,7 have also revealed poloidal flows of up to several tens
of kilometres per second, exceeding by a large factor the
values predicted on the basis of neoclassical theory.

A number of authors have studied toroidal8,9 and
poloidal10–14 flow modifications to axisymmetric equilibria in
the framework of ideal MHD. The present authors have in-
vestigated two-fluid axisymmetric equilibria with arbitrary
electron and ion flows,15 deriving a set of equations that is
analogous to the Grad-Shafranov-Bernoulli system of ideal
MHD. The purpose of the present paper is to study in general
terms the effects of steady toroidal and poloidal flows on
tokamak plasma profiles and equilibrium magnetic field

structure in the framework of both single-fluid �Sec. II� and
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two-fluid theory �Secs. III and IV�, with the principal empha-
sis on the latter. It will be shown that the two-fluid viewpoint
leads to new results �from which earlier results can be recov-
ered in suitable limits� concerning the variation of electron
density, pressure, electrostatic potential, and toroidal flow ve-
locity. These results are testable experimentally, using data
from tokamaks with strong flows, such as MAST, DIII-D,
NSTX and JET, and could thus be used in principle to de-
duce values of plasma parameters in those devices. Another
motivation for studying the effects of steady flows in toka-
maks is that it is important to have reasonably accurate equi-
libria corresponding to actual experimental conditions before
examining them for stability: strong flows are known to in-
fluence instabilities in tokamaks, in some cases playing a key
role in stabilizing them and reducing transport losses �see,
e.g., Ref. 16�.

II. SINGLE-FLUID THEORY

Ideal MHD equilibria are represented by steady-state so-
lutions of the single-fluid momentum balance equation,

�m
dv

dt
= − �p + j Ã B , �1�

and Ohm’s law,

E + v Ã B = 0, �2�

together with an equation of state relating pressure p and
mass density �m. In Eqs. �1� and �2�, v is fluid velocity, d /dt
denotes the convective time derivative, j is current, B is the
magnetic field, and E is the electric field. A toroidally sym-
metric magnetic field satisfying � ·B=0 can be represented

generally by the expression
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B = �−
1

R

��

�Z
�eR + B�e� + � 1

R

��

�R
�eZ, �3�

where eR, e�, eZ are unit vectors in a right-handed �R ,� ,Z�
cylindrical coordinate system and �, B� depend only on R
and Z. We assume that all other dependent variables are also
independent of �. Under steady-state conditions and in the
absence of plasma sources and sinks, the mass flux �mv must
also be divergence-free, and hence expressible in the form

�mv = �−
1

R

��

�Z
�eR + �mv�e� + � 1

R

��

�R
�eZ, �4�

where v� is toroidal flow velocity and � is a streamfunction
for the poloidal flow.

The steady-state assumption requires that �ÃE=0 and
hence that there exists a function � such that E=−��. Un-
der conditions of toroidal symmetry, the toroidal component
of Eq. �2� then yields

���,��
��R,Z�

= 0. �5�

We infer that � depends only upon � and write �=W���,
where W is a function that describes the poloidal flow. De-
noting the poloidal components of the flow and the magnetic
field by v� and B�, it is clear from Eqs. �3� and �4� that

�mv�

B�

= W�, �6�

where the prime denotes differentiation with respect to �.
Thus, the ratio of poloidal mass flux to poloidal magnetic
field must be a flux function. We note that once ��R ,Z� and
�m�R ,Z� have been calculated and the flux function W���
specified, both B� and v� are determined from the previous
formulas.

As noted in Ref. 15, it follows from these equations that
the electrostatic potential � must be a flux function, irrespec-
tive of any ordering of the toroidal and poloidal flows, and
that its derivative with respect to � is given by

�� =
v�

R
− �B�

B�
�v�

R
. �7�

This is an exact result for toroidally symmetric ideal MHD
equilibria with flows. One could obtain an analogous two-
fluid result from the generalized form of Ohm’s law, contain-
ing a Hall term and pressure gradient terms. In the absence of
strong flows, the radial electric field E��−�� is essentially
determined in steady state by the pressure gradient, which
cannot then be neglected in the radial force balance. In such
circumstances it is not appropriate to use ideal MHD to ob-
tain ��. On the other hand in MAST discharges with tran-
sonic flows the radial electric field is balanced primarily by
the Lorentz force, with the pressure gradient playing only a
minor role.5 The determination of � in the framework of
two-fluid theory will be discussed in detail in Sec. III.

In the case of conventional tokamaks, with �B��� �B��,
Eq. �7� suggests that poloidal flows are likely to play a sig-
nificant role in determining the radial electric field unless the

order of v� /v� is even smaller than that of B� /B�. In general,
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the flows are determined by a combination of transport pro-
cesses and momentum sources �such as neutral particle
beams� and sinks. In most instances it is unlikely that neo-
classical processes will adequately describe the transport, al-
though they will always play a role in determining the total
momentum fluxes. It is of interest to observe that in MAST
B��B� and, with counterbeam injection v��300 km s−1,1

v�	50 km s−1.17 The previous equation then implies that the
toroidal plasma flow on each flux surface will be approxi-
mately that of a rigid body, although a variation of up to
around 10% in the toroidal angular velocity can be expected
due to the poloidal flow.

Assuming toroidal symmetry, one can deduce from the
toroidal component of the momentum equation �Eq. �1�� the
existence of a flux function f given by15

f��� = RB� − 
0W�Rv�, �8�

where we have used Ampère’s law, 
0 being free space per-
meability. Equation �8� reduces to the familiar result RB�

= f��� if either the poloidal or toroidal flow is zero. When
such flows are present, we can solve for B�:

RB� =
f��� + 
0R2��W�

�1 − M*
2�

, �9�

where

M* =
v�

cA�

�10�

is the poloidal flow normalized to the poloidal Alfvén speed,

cA� =
B�

	
0�m

. �11�

We note from Eq. �6� that M* varies on a flux surface if and
only if �m does. With the above definitions, we can rewrite
Eq. �8� in the following perspicuous form:

RB� = f��� + RB��v�v�

cA�
2 � . �12�

We can also obtain an expression for the toroidal angular
velocity, ��
v� /R:

�� =
1

1 − M*
2��� +

fW�

R2�m
� . �13�

This expression shows explicitly that in the limit of ideal
MHD, the toroidal angular velocity can vary on a flux sur-
face �unlike the electrostatic potential� if poloidal flows are
present. The flows v� and v� must satisfy momentum trans-
port equations, the solution of which requires knowledge of
the flux surfaces as well as the relevant transport coefficients
and sources. In these circumstances, flux functions such as
�, W, and f can be obtained by solving relevant transport
equations simultaneously with the equilibrium equations,
given appropriate sources and boundary conditions. We have
demonstrated that these three flux functions, together with �
and �m, can be used to calculate the poloidal and toroidal

magnetic fields, electric field, and the flows. In particular, the
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variations of these fields on a given flux surface with R are
completely determined.

An equation for �m will now be obtained, assuming that
the temperature T is a flux function. The pressure is then
given by p=�mT��� /m, where m is the mean particle mass
and T is in energy units. In this case momentum balance in
the direction parallel to B yields

B · ��v�
2

2
+

v�
2

2
− ��Rv� +

T���
m

ln �m� = 0. �14�

Hence we deduce the existence of a flux function,H such that
the following Bernoulli relation applies:

v�
2

2
+

v�
2

2
− ��Rv� +

T���
m

ln �m = H��� . �15�

Setting v�=v�=0 in this equation,we recover the well-
known result that �m is a flux function in the absence of
flows if T is a flux function. Putting v�=W�B� /�m

=W� ��� � / �R�m� and v�=��R, with �� given by Eq. �13�,
the Bernoulli relation becomes a transcendental equation for
�m in terms of ��R ,Z� and its derivatives, together with R
and the flux functions W�, ��, f , T,and H. Once this equation
is solved, the variation of �m with R and Z can be determined
by solving a partial differential �Grad-Shafranov� equation
for �. It is important to note, however, that Eq. �15�, which
is valid for arbitrary v� and v�, is sufficient to determine the
variation of �m on a flux surface.

The transcendental equation for �m becomes tractable
when v� is negligible compared to v�. It follows from Eq.
�15� that we can formally write

�m = K̄���exp�−
m�v�

2 + v�
2 − 2��Rv��

2T���
� , �16�

where K̄=exp�mH /T� is a flux function. Taking the limit
v�→0 and substituting for �� from Eq. �13�, we find that
Eq. �16� reduces to

�m = K̄���exp�m��
2 ���R2

2T���
� , �17�

where the toroidal rotation rate ��=�� is a flux function in
this limit. Under conditions of quasineutrality, Eq. �17� gives
the variation of electron density on a flux surface. This result
for the density contrast was obtained by Wesson.18 If single-
fluid theory is assumed to be applicable, with T isotropic and
a flux function, any measured departure of the density varia-
tion from that indicated by Eq. �17� must be attributed to
poloidal flows. When the flux surfaces are assumed to be
isentropic rather than isothermal, the predicted flux surface
variation of density in the presence of purely toroidal flows
differs from that given by Eq. �17�, and there is also a varia-
tion of temperature.8 We will show later that two-fluid analy-
sis implies variations of quantities on flux surfaces that dif-
fer, in general, from the predictions of MHD. Thus,it is
possible, in principle, to distinguish between the two models
experimentally.

By examining the components of the momentum equa-

tion in the �R ,Z� plane, eliminating j via Ampère’s law,and
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making use of the flux functions deduced previously, it is
straightforward to derive a generalized single-fluid Grad-
Shafranov equation for arbitrary flows, with either T or en-
tropy assumed to be a flux function.10,11,15 When T is a flux
function, the equation can be written in the form

�

�Z
��

��

�Z
� + R

�

�R
��

1

R

��

�R
�

= − 
0R2��m

K̄
�P� − RB�f� + 
0R2�m�T�

m
�ln��m

K̄
�

− 
0W�W�
����2

�m
− 
0�mR2��Rv�

− 
0�RB���Rv��W�, �18�

where P���
 K̄���T��� /m and

� = 1 −

0�W��2

�m
= 1 − M*

2. �19�

When v�=v�=0, we have �=1, �m= K̄���, p= P���, and
RB�= f���: it is evident that Eq. �18� then reduces to the
familiar form of the Grad-Shafranov equation for tokamak
equilibria without flows.19 In general, the equation must be
solved numerically with specified boundary data and external
coil currents. This is a formidable problem, even when sin-
gularities due to �→0 do not arise and the equation remains
elliptic everywhere. Such a solution is needed for complete
consistency in the determination of �m, the flow velocities,
and ��R ,Z�. Equation �18� does, however, simplify consid-
erably in the limit v�→0, to such an extent that nontrivial
analytical solutions can be constructed.8,9 Such solutions
may provide an approximate description of MAST plasmas
with neutral beam injection in the direction counter to that of
the plasma current.1

III. TWO-FLUID THEORY: PURELY TOROIDAL ION
FLOWS

In this section we discuss quasineutral, toroidally sym-
metric solutions of the steady-state dissipationless two-fluid
equations,

� · �nvi,e� = 0, �20�

mi,eKi,e Ã nvi,e = − ��nTi,e� − mi,en � �vi,e
2 /2�

− ei,en � � + ei,envi,e Ã B , �21�

� Ã B = 
0en�vi − ve� . �22�

Here n is the common number density of ions and electrons,
labeled, respectively, by the suffixes i and e on other quan-
tities; m, e, v, and T denote, respectively, particle mass, par-
ticle charge, fluid velocity, and temperature �assumed to be
isotropic for both species�; and K
�Ãv is vorticity. The
closure of Eqs. �20�–�22� is provided by energy equations for
the two species plus � ·B=0.

The assumption of isotropic temperature is usually justi-
fied for bulk electrons and ions in tokamaks. Moreover, par-

allel electron heat transport is sufficiently rapid that Te can
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be treated as a flux function to a high degree of accuracy; we
shall do so, thereby obviating the need for an electron energy
balance equation. On the other hand, it is by no means clear
that Ti should be a flux function, especially when there are
large flows present. In a dissipationless framework one might
reasonably assume that n and Ti are isentropically related.
We discuss the ion energy equation in an Appendix, leaving
its variation on a flux surface to be arbitrary for the present.
The important special case of Ti being constant on a flux
surface will be discussed later in some detail.

We now proceed to reduce Eqs. �20�–�22�, making ap-
propriate use of the ordering me /mi→0. A more general re-
duction was carried out by the present authors in Ref. 15.
However, the equations derived in that paper are not analyti-
cally tractable and are more complicated to solve than the
single-fluid model presented in the preceding section.

Due to toroidal symmetry, the magnetic field can be rep-
resented by Eq. �3�, as in the case of ideal MHD. Two-fluid
mass conservation �Eq. �20�� implies moreover the existence
of poloidal flow streamfunctions �i,e�R ,Z�, such that

nvi,e = �−
1

R

��i,e

�Z
�eR + nv�

i,ee� + � 1

R

��i,e

�R
�eZ,

=��i,e Ã �� + nRv�
i,e � � , �23�

where v�
i,e�R ,Z� are the toroidal flow velocities. As in the

case of ideal MHD, we will show that certain flux functions
can be used to determine all other variables �n, vi,e, Ti, �, B�
in terms of R, together with � and its first derivatives. The
poloidal flux function itself will be shown to satisfy a gen-
eralized Grad-Shafranov equation, consistent with the two-
fluid system of equations. In principle, the flux functions
could be determined by solving transport equations with
specified sources, boundary data, and suitable turbulence-
driven and/or collisional transport coefficients. Alternatively,
experimental data could be used to infer their form.

We begin our analysis with the electrons, as in this case
the equations simplify considerably in the limit me /mi→0.
Neglecting inertia and dissipation, the electron momentum
balance equation takes the simple form

0 = − �nTe + en � � − enve Ã B , �24�

where e is the proton charge. With B and nve represented by
the expressions in Eqs. �3� and �23�, one can deduce from the
toroidal component of the full electron momentum balance
equation �with inertial terms retained� that the toroidal ca-
nonical momentum of the electron fluid, P�

e 
meRv�
e −e� is

a function of �e under conditions of toroidal symmetry.15 It
follows that �e must be a flux function in the limit of neg-
ligible electron inertia. This result is generally an excellent
approximation in MAST: the electron mechanical toroidal
momentum is typically around three orders of magnitude
smaller than e�. Thus, the electron fluid can only move
within flux surfaces, and significant cross-field fluxes cannot
occur in the absence of a large toroidal symmetry-breaking
force.

With Te taken to be a flux function, the component of

Eq. �24� parallel with B yields the adiabaticity relation
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Te ln n = e� + he��� , �25�

where he��� is a flux function. Thus, there can be variations
of n on a flux surface if and only if there are such variations
in the electrostatic potential, �. Direct measurements of the
latter, although difficult, would be of great value. Eliminating
� from Eq. �24� using Eq. �25� we obtain the following
equation describing the electron force balance in the direc-
tion normal to the flux surface:

Te� ln n = �Te + he�� +
ev�

e

R
− � eB��e�

nR
� . �26�

We will make use of this relation later.
Before considering ion dynamics, we obtain two useful

relations from Ampère’s law �Eq. �22��. The poloidal com-
ponent of this equation can be integrated exactly to give

RB� = R0B�0 + e
0��i − �e� , �27�

where R0B�0 is an integration constant that may be taken to
be RB� at the magnetic axis, R=R0, Z=0. We have seen that
�e is a flux function; in general, �i is not a flux function.15

Equation �27� enables RB� to be eliminated in favor of these
quantities, describing ion and electron poloidal flows. Using
Eq. �3�, we can write the toroidal component of Eq. �22� in
the form

j� = −
1


0R
� �2�

�Z2 + R
�

�R
� 1

R

��

�R
�� , �28�

where j�
en�v�
i −v�

e � is the toroidal current density.
We now consider the ion momentum balance. If no as-

sumptions are made regarding the relative sizes of toroidal
and poloidal ion flows, one can derive a rather complicated
second-order nonlinear elliptic partial differential equation
for �i and a Bernoulli equation referred to surfaces of con-
stant �i �rather than constant ��.15 In addition, toroidal sym-
metry requires that P�

i 
mRv�
i +e� be a function only of �i.

These predictions are essentially different from �and more
complicated than� the single-fluid, ideal MHD results of the
preceding section. However, both theoretical and experimen-
tal studies tend to suggest that while the ion poloidal flows
may not always be as small as those suggested by neoclas-
sical considerations �cf. Ref. 20, p. 366�, they are neverthe-
less somewhat smaller than toroidal flows, which, in the case
of MAST discharges with countercurrent neutral beam injec-
tion, can exceed the ion acoustic speed. We therefore con-
centrate in this paper on the experimentally relevant limit
�v�

i � �v�
i �. We first neglect poloidal ion flows entirely, i.e.,

we set �i=0. Later we will indicate how poloidal ion flows
can be treated using a perturbation expansion in the small
parameter �v�

i /v�
i �.

With �i=0, it follows immediately from Eq. �27� that
RB�
 f��� is a flux function. Summing the electron and ion
momentum equations, we obtain

minKi Ã vi = − �ptot − min � �vi
2/2� + j Ã B , �29�

where ptot=2nT, T= �Ti+Te� /2. For the case of a purely tor-
i
oidal flow, vi=Rv� ��, the vorticity is
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Ki = �R v�
i
Ã �� . �30�

Using Eq. �30� together with Ampère’s law in Eq. �29�, we
obtain

�ptot =
min�v�

i �2

R
� R + �R
0j� − f f�


0R2 � � � . �31�

This equation indicates that in steady state the plasma pres-
sure gradient balances the sum of a centrifugal force, acting
along the major radial direction, and a Lorentz force acting
normal to the flux surface. The pressure cannot therefore be
a flux function, as it is in the absence of flows. The poloidal
component of Eq. �31� can be written in the form

�ptot

�l
=

min�v�
i �2

R

�R

�l
, �32�

where l denotes the arclength along a flux surface in the
�R ,Z� plane. Dividing both sides by ptot=2nT and using the
definition v�

i =��
i R, the equation can be recast in the form

� ln ptot

�l
=

mi���
i �2

4T

�R2

�l
. �33�

This equation can be satisfied in an infinite number of ways,
but we consider only physically transparent cases. Let us
regard � and R2 as independent variables describing a po-
loidal plane. This is permissible, since the Jacobian of � and
R2 does not generally vanish. Introducing a function
V�� ,R2� such that

mi���
i �2

4T
=

�V

�R2 . �34�

Equation �33� can be formally integrated to yield the
Bernoulli relation,

ln ptot − V��,R2� = ln P*��� , �35�

where P*��� is a flux function. Hence

ptot = P*���exp�V��,R2�� . �36�

Since P* is a function of � only, we can rewrite Eq. �34� in
the form

mi���
i �2

4T
=

� ln ptot

�R2 . �37�

Writing

�ptot =
�ptot

�R2 � R2 +
�ptot

��
� � , �38�

and comparing with Eq. �31�, we deduce that

�ptot

��
=

j�

R
−

f f�


0R2 . �39�

Now Eq. �26� can be rewritten as follows, using RB�= f

=R0B�0−e
0�e:

oaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP lice
Te�n ln n = n�Te + he�� +
env�

e

R
+ � f f�


0R2� . �40�

Adding Eqs. �39� and �40� and using the definitions of j� and
v�

i , we obtain

Te�n ln n − n�Te + he�� +
�ptot

��
= en��

i . �41�

Dividing by ptot=2nT, we then obtain

Te�

2T
ln ptot −

Te�

2T
ln 2T −

�Te + he��
2T

+
� ln ptot

��
=

e��
i

2T
.

�42�

We now show that the system can be closed by specifying Ti

through an equation of state. As an example, we consider the
important special case when Ti is assumed to be a flux func-
tion �cf. the Appendix�. Then, T is also a flux function. Dif-
ferentiating Eq. �42� with respect to R2 and eliminating ptot

using Eq. �37�, we obtain

Te�

T

mi���
i �2

8T
+

�

��
�mi���

i �2

4T
� =

e

2T

���
i

�R2 . �43�

Before computing the complete solution of this equation, we
consider two interesting special cases. Let us suppose that
the toroidal angular velocity of the ions is a flux function: the
ion fluid on a flux surface then rotates toroidally as a rigid
body. Equation �43� then reduces to a linear ordinary differ-
ential equation,

Te�

T

mi���
i �2

8T
+

d

d�
�mi���

i �2

4T
� = 0, �44�

with the solution

mi���
i �2

4T
=

mi���0
i �2

4T0
exp�− 

�0

� Te� d�

2T � , �45�

where �0 is the value of � at some reference surface �for
example, the magnetic axis� and the subscript 0 denotes
values at this location. Since V=mi���

i R�2 / �4T� in this case
�cf. Eq. �34��, it follows that

V��,R2� =
mi���0

i �2R2

4T0
exp�− 

�0

� Te� d�

2T � . �46�

Moreover, from Eq. �36� we obtain

ptot = P*���exp�mi���
i R�2

4T
� , �47�

and

n = N*���exp�mi���
i R�2

4T
� , �48�

where 2N*���T���
 P*���. We deduce finally from the
electron adiabaticity relation �Eq. �25�� that

e�

Te
=

e�*���
Te

+
mi���

i R�2

4T
, �49�

* *
where e� =Te ln N −he.
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It should be noted that although these results resemble
the ideal MHD results of the previous section insofar as ptot

and n have a Gaussian dependence on R, the two-fluid theory
completely determines the angular velocity ��

i in terms of
the specified electron and ion temperature variations with
respect to � �Eq. �45��. In ideal MHD the angular velocity
can be an arbitrary function of �, whatever the specified
variation of T. Moreover, the two-fluid theory implies an
electric potential variation on a flux surface due to purely
toroidal flow �Eq. �49��, whereas in ideal MHD � remains a
flux function in the presence of arbitrary toroidal or poloidal
flows �Eq. �7��. In principle, Eq. �45� can be tested experi-
mentally by measuring T��� and ��

i ���. Such measure-
ments could also test the hypotheses that T and ��

i are in-
deed flux functions for arbitrary toroidal ion flows �including
transonic flows�.

A second special case is that in which the mechanical
toroidal angular momentum per unit mass of the ion fluid is
a flux function, i.e., the ions rotate toroidally in a Keplerian
manner. We can then write ��

i =���� /R2: clearly the toroi-
dal canonical momentum of the ion fluid P�

i =mi��
i R2+e�

is also a flux function in this case. From Eq. �43� we find that
� satisfies the ordinary differential equation,

Te�

2T

mi�
2

4T
+

d

d�
�mi�

2

4T
� = −

e�

2T
.

This reduces to a linear equation

d�

d�
−

Ti�

4T
� = −

e

mi
, �50�

with the solution

���� =
1


�����0 −
e

mi


�0

�


���d�� , �51�

where


��� = exp�− 
�0

� Ti� d�

4T � ,

and �0=���0�. For specified ion and electron temperature
profiles, Eq. �51� gives the variation of ion toroidal angular
momentum with �. We can also obtain expressions for V,
ptot, n, and � in terms of �:

V��,R2� = −
mi�

2

4TR2 , �52�

ptot = P*���exp�−
mi�

2

4TR2� , �53�

n = N*���exp�−
mi�

2

4TR2� , �54�

e�

Te
=

e�*���
Te

−
mi�

2

4TR2 . �55�

This model predicts a pressure and density contrast on a
flux surface, but differs from the previous rigid body solution

�cf. Eqs. �46�–�49�� in important respects. Both solutions pre-
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dict that the density and pressure will be larger on the out-
board side of the plasma, although the actual variation with
R2 is different in the two cases. More importantly, in the rigid
body solution there is, by definition, no variation of the an-
gular velocity on a flux surface, whereas in the Keplerian
solution the toroidal angular velocity and the toroidal veloc-
ity are higher on the inboard side of a given flux surface.

We now compute the complete solution of Eq. �43�, as-
suming only that T is a flux function. Defining a new depen-
dent variable, �2=mi���

i �2 /4T, a new independent variable
y=R2, and a function ���� by the expression

���� = exp�
�0

� Te� d�

2T � �56�

=
T

T0

2, �57�

we find that Eq. �43� can be written in the form

�

��
���2� =

�

�y
� e��

	miT
� .

Setting z=�1/2� and

x = 
�0

� e
	miT

����d� , �58�

it becomes apparent that the equation for � reduces to the
simple form

�z2

�x
=

�z

�y
. �59�

This first order nonlinear partial differential equation can be
integrated using standard techniques.21 The complete integral
is

z =
c − x

2�y + d�
, �60�

where c and d are arbitrary constants. An infinity of solutions
can be obtained from this two-parameter family of complete
integrals. We obtain nontrivial solutions that are independent
of y by putting c=kd, where k is an arbitrary constant, and
taking the limit d→�. These solutions, which correspond to
the rigid body rotation case considered previously, are also
independent of x: setting k= �mi /T0�1/2��0

i , we recover Eq.
�45�. Setting c=mi

1/2�0 /T0
1/2, d=0, on the other hand, we re-

cover the Keplerian solution �Eq. �51��.
In the general case the � dependence of the solution is

complicated and depends on the temperature profiles, but the
R2 dependence of ptot and n is uniquely determined by the
complete integral given by Eq. �60�. Equation �37�, when
written in the form

� ln ptot

�y
=

A���2

�R2 + d�2 , �61�
where
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A��� =
c − x���
2�1/2���

, �62�

can be easily integrated to give

ptot = P*���exp�−
A���2

�R2 + d�� . �63�

Hence we deduce that

n = N*���exp�−
A���2

�R2 + d�� , �64�

and, from Eq. �25�,

e�

Te
=

e�*���
Te

−
A���2

�R2 + d�
. �65�

The rotation profile in the general case is given by

��
i = �4T���

mi
�1/2 A���

R2 + d
. �66�

It should be noted that Eqs. �63�–�66� are exact results ob-
tained from the steady two-fluid system of equations in the
limit me /mi→0, with Te and Ti taken to be flux functions
and v�

i taken to be negligible. They are clearly more general
than the ideal MHD results derived earlier, and include them
as a special case: expanding −1/ �R2+d� for d→� and put-
ting m= �mi+me� /2�mi /2, we recover from Eqs. �64� and
�66� the density variation given by Eq. �17�.

If we relax the assumption that Ti is a flux function, the
theory can be used, in principle, to predict the ion tempera-
ture contrast on a flux surface. Equations �37� and �42�, to-
gether with a specified energy equation for Ti, determine ��

i ,
ptot, and n as functions of R2 and �, in terms of the specified
flux functions. In general, the ion equation of state is com-
plicated and involves �, which in two-fluid theory is not a
flux function. In view of this, we adopt a more experimen-
tally oriented approach to the case in which Ti is not a flux
function. If ptot is specified as a function of � and R2, in
accordance with experimental measurements, Ti and ��

i can
then be computed using Eqs. �37� and �42�. In such a proce-
dure, Ti is effectively determined by momentum balance
rather than the energy equation, which is thus not required.
We illustrate the method by expanding ln ptot, ��

i , and T as
follows:

ln ptot − ln P*��� = ��1���y + �−1���y−1 + �−2���y−2

+ . . . � , �67�

1

T
=

1

T0���
�1 + �−1���y−1 + �−2���y−2 + . . . � , �68�

��
i = �0

i ����1 + �−1���y−1 + �−2���y−2 + . . . � , �69�

where the coefficient functions � j, � j, and � j are to be deter-
mined �the expansion parameter y=R2 can be made dimen-
sionless by normalizing R to R0, for example�. The first terms
on the right hand sides of Eqs. �67�–�69� correspond to the
rigid body solution discussed previously, with Ti a flux func-

tion. Inserting these series expansions into Eq. �37� and
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equating like powers of y, we obtain the recurrence relations

�1 =
m��0

i �2

4T0
, �70�

0 = �1�2�−1 + �−1� , �71�

�−1 = − �1�2�−2 + �−1
2 + �−2 + 2�−1�−1� ,

. . . . . �72�

Substituting the expansions into Eq. �42�, we obtain

Te�

2T0
�1 + �1� = 0, �73�

Te��1�−1

2T0
=

e�0
i

2T0
+

�Te + he��
2T0

− �ln P*�� −
Te�

2T0
ln� P*

2T0
� ,

. . . . . �74�

The � j can be obtained directly from the function ptot�� ,R2�,
since this is assumed to be determined experimentally. Equa-
tion �74� can then be used to obtain �−1 if P* and he are
specified, and Eq. �71� then yields �−1. In a similar fashion,
�−2, �−2 and so on can be determined self-consistently using
the previous recurrence relations. Alternatively, the coeffi-
cients could, in principle, be determined for any specified ion
equation of state.

Finally, in this section we discuss briefly the two-fluid
Grad-Shafranov equation in the absence of poloidal ion
flows. This can be obtained very simply by rearranging Eq.
�39�, using the expression for j� given by Eq. �28�:

�2�

�Z2 + R
�

�R
� 1

R

��

�R
� = − f f� − 
0R2�ptot

��
. �75�

Evidently this reduces to the ideal MHD Grad-Shafranov
equation in the absence of flows when ptot= P*���.19 In the
general case, ptot must be specified as a function of � and
R2; if Ti and Te are taken to be flux functions, ptot is given by
Eq. �63�. With this important modification, the Grad-
Shafranov equation, together with appropriate boundary
data, can be used to determine ��R ,Z� in the usual manner.

IV. TWO-FLUID EQUILIBRIA: FINITE POLOIDAL ION
FLOWS

In this section we briefly discuss a simple perturbative
extension of the preceding theory when v�

i is assumed to be
finite but small compared to v�

i : we do not assume, however,
that the poloidal flows are necessarily as small as those pre-
dicted by neoclassical theory. Experimental data from several
tokamaks suggest that it is appropriate to consider this
scenario.2,6,7 The ion vorticity Ki can be written as

Ki = ��Rv�
i � � �� + RK�

i � � , �76�
where
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K�
i = −

1

R
� �

�Z
�1

n

��i

�Z
� + R

�

�R
� 1

nR

��i

�R
�� . �77�

Setting RB�= f as before, but without assuming that this is
necessarily a flux function when poloidal ion flows are
present, we find that the ion momentum balance equation
takes the form

−
min�v�

i �2

R
� R +

f


0R2 � f + �ptot −
j�

R
� �

= −
min

2
� ���i

n
�2

−
miK�

i

R
� �i. �78�

We now consider transonic flows, such that �v�
i �2�T /mi,

that satisfy the ordering ��
i eB� /mi
��

ci and v�
i v�

i

where v�
i is the ion poloidal flow. In this regime the terms on

the left hand side of Eq. �78� are formally all of the same
order. The terms on the right, however, are of order �v�

i /v�
i �2

smaller. In general, as we have seen earlier, ��
i can be

expressed as a function of � and R2. Using the definition
P�

i =miv�
i R+e�, we can write

P�
i = mi��

i R2 + e� = �P�
i � + �P , �79�

where angled brackets denote a flux surface average and
�P�

i �=mi���
i R2�+e�, �P=mi���

i R2− ���
i R2��. By construc-

tion, �P cannot be a flux function �except in the trivial case
�P=0�, but it is of order ���

i � /��
ci smaller than the flux func-

tion quantity �P�
i �. Note that �P→0 at the magnetic axis,

whereas �P�
i � is finite there �even if � is defined such that it

vanishes at that point�. Since toroidal symmetry requires P�
i

to be a function of �i,
15 there exists a function Wi such that

�i=Wi�P�
i �. Expanding to leading order in �P, we obtain

�i = Wi��P�
i � + �P� = W0

i ��� + W1
i ����P , �80�

where W0
i ���=Wi��P�

i �� and W1
i ���=dWi /dP�

i , evaluated
for P�

i = �P�
i �. We also have the assumed small poloidal flow

ordering W0
i ���n��

i R�, where �= �v�
i /v�

i �. To leading order
in ���

i � /��
ci, it is apparent that �i, and hence f =R0B�0

+e
0��i−�e� are flux functions. It should be noted that this
result is applicable for arbitrary plasma beta, ion toroidal
Mach number, and aspect ratio. Whereas in the ideal MHD
limit the streamfunction � is exactly constant on a flux sur-
face �cf. Eq. �5��, this is only approximately true of the ion
streamfunction �i in two-fluid theory. We note from Eq. �23�
that carbon impurity measurements of v�

i and Thomson scat-
tering measurements of n across the plasma midplane could
be used to determine �i inboard and outboard of the mag-
netic axis:

�i = n�R,Z = 0�v�
i �R,Z = 0�R dR . �81�

If ��R ,Z� were also known, one could then test experimen-
tally the deduction that �i is approximately a flux function.
If this were exactly true, nv�

i /B� would also be a flux func-
tion ��i�, in fact�: measurements of this quantity at different
points on a given flux surface would thus provide an equiva-

lent experimental test.

oaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP lice
With �i assumed to be a flux surface quantity, Eq. �78�
can be written as

−
min���

i �2

2
� R2 +

f f�


0R2 � � + �ptot −
j�

R
� �

= −
min

2
� ��i� � �

n
�2

−
miK�

i �i�

R
� � . �82�

We now introduce the flux surface average

v�
2��� 
 ����i

n
�2� ����i� � �

n
�2� . �83�

Since the first term on the right hand side of Eq. �82� is
assumed to be small, ��i� �� /n�2 can be replaced by its flux
surface average:

−
min���

i �2

2
� R2 +

f f�


0R2 � � + �ptot −
j�

R
� �

= − �minv�v�� +
miK�

i �i�

R
� � � . �84�

Writing �ptot in the form given by Eq. �38�, and equating
coefficients of �R2 in Eq. �84�, we obtain Eq. �37�, as before.
Equating coefficients of ��, on the other hand, we obtain a
modified form of Eq. �39�:

�ptot

��
=

j�

R
−

f f�


0R2 − ptot�miv�v��

2T
+

miK�
i �i�

Rptot
� . �85�

Adding this to Eq. �40� and dividing the sum by ptot we
obtain

Te�

2T
ln ptot −

Te�

2T
ln 2T −

�Te + he��
2T

+
� ln ptot

��

=
e��

i

2T
− �miv�v��

2T
+

miK�
i �i�

Rptot
� . �86�

It is apparent from Eq. �85� that the Grad-Shafranov equation
now takes the form

�2�

�Z2 + R
�

�R
� 1

R

��

�R
� = − f f� − 
0R2�ptot

��

− 
0R2ptot�miv�v��

2T
+

miK�
i �i�

Rptot
� .

�87�

This reduces, as required, to Eq. �75� in the limit �i→0. The
right hand side of Eq. �87� includes a toroidal centrifugal
term �represented by the R2 dependence of ptot� and smaller
poloidal flow terms. It should be noted that the flux function
f =RB� is related to both the ion and electron poloidal flows
via the poloidal component of Ampère’s law �cf. Eq. �27��.
This system of equations is valid for arbitrary toroidal and

i i
poloidal flows satisfying the ordering �v� /v��→0.
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V. CONCLUSIONS AND DISCUSSION

We have considered toroidal and poloidal flow effects on
tokamak equilibria using both single-fluid and two-fluid
theory, with the principal emphasis on the latter. The two-
fluid analysis has a number of distinctive features relating to
the variation with respect to major radius R of various quan-
tities on flux surfaces, and leads to nontrivial, experimentally
testable predictions. For example, when the ion and electron
temperatures Ti and Te are flux functions, and the ion flows
in a given flux surface correspond to rigid body toroidal
rotation, we have shown that two-fluid theory determines
uniquely the rotation profile in terms of the temperature pro-
files �in MHD the rotation rate and temperature profile can be
independently prescribed�. Thus, by applying the analysis to
measurements of temperature and rotation profiles, one could
test the assumption of rigid body rotation. With Ti and Te

assumed to be flux functions, we have shown that the two-
fluid theory admits a far wider class of rotation, density, and
electrostatic potential profiles �varying nontrivially with re-
spect to both poloidal flux � and R� than those correspond-
ing to rigid body rotation, which is required by ideal MHD in
the absence of poloidal flows �cf. Eq. �13��. Relaxing the
assumption that ion temperature is a flux function leads to a
still wider class of possible profiles.

We have also shown that ion momentum balance in the
absence of ion poloidal flows leads to a generalized two-fluid
Grad-Shafranov equation that is structurally similar to the
standard ideal MHD form of this equation. We have com-
puted leading order ion poloidal flow corrections to this
equation, again casting it in a form that is closely analogous
to the zero flow ideal MHD version. In principle, experimen-
tal profile data could be used to solve the two-fluid equa-
tions, thereby enabling the equilibrium structure to be deter-
mined more self-consistently than is possible in the
framework of ideal MHD. In a future paper we intend to
apply our two-fluid analysis to transonic MAST plasmas of
the type discussed in Ref. 1.
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APPENDIX: ION ENERGY BALANCE

The ion energy balance equation requires special consid-
eration. In ideal MHD it is usual to assume that the plasma
temperature is a flux function. Alternatively, one might as-
sume, as in Ref. 15 for example, that the entropy is a flux
function, with pressure and density being adiabatically re-

lated. However, when two charged species are present and
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memi, neither assumption is necessarily appropriate under
tokamak conditions. Strictly speaking, the ions are advected
at their EÃB drift velocity VE rather than their fluid velocity
vi,

20 and the ion energy balance equation has the following
general structure �neglecting sources and transport processes,
both turbulent and neoclassical, perpendicular to flux sur-
faces�:

3
2nVE · �Ti + nTi � · VE = − � · q�

i , �A1�

where

q�
i = − n��

i B

B
��Ti, �A2�

is the parallel ion heat flux, ��
i being an effective parallel ion

thermal diffusivity �typically collisionless, and of order Rvth
i ,

where vth
i is the ion thermal speed�, and toroidal symmetry

implies that we require only the components of VE in the
�R ,Z� plane:

VE =
f � � Ã ��

B2 . �A3�

These components of VE can be large even when the ion
poloidal fluid flow v�

i is negligible. The � ·VE term on the
left hand side of Eq. �A1� vanishes in the infinite aspect ratio
limit, and can thus be neglected to a first approximation un-
der tokamak conditions. If vth

i � �VE�, it is clear that Eq. �A1�
can be satisfied only if Ti is essentially a flux function. On
the other hand, if the opposite inequality is satisfied, Eq.
�A1� reduces to

���,Ti�
��R,Z�

� 0, �A4�

To a first approximation, Ti would then be a function of �
�and hence of n� and vary on a flux surface. If, as in MAST
plasmas with countercurrent neutral beam injection, the tor-
oidal flows are transonic,1 the electric field must, by defini-
tion, produce drifts of the order of vth

i . Equation �A1� sug-
gests that significant variations of Ti on a flux surface could
occur under these circumstances. For this reason, although in
this paper we have considered in detail the case of Ti being a
flux function, it is more appropriate for plasmas with strong
toroidal flows to specify ptot�� ,R2� in terms of the profile
functions P*���, � j��� and then to evaluate the rotation
��−j���� and ion temperature ��−j���� profile functions self-
consistently. In this approach the ion energy equation is not
required. Of course it is possible, in principle, to solve the
ion energy equation with appropriate sources and transport
coefficients, along with the other equations of the two-fluid
system, in order to determine the equilibrium. This, however,
is almost as challenging as determining the entire set of flux
functions using transport modeling. The analysis presented in
the present paper, when used in conjunction with experimen-
tal measurements �of rotation or density, for example�, pro-
vides a more practical method of determining the ion tem-

perature distribution.
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