Modeling of diamagnetic stabilization of ideal magnetohydrodynamic instabilities associated with the transport barrier

G. T. A. Huysmans, S. E. Sharapov, A. B. Mikhailovskii, and W. Kerner

Citation: Phys. Plasmas 8, 4292 (2001); doi: 10.1063/1.1398573
View online: http://dx.doi.org/10.1063/1.1398573
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v8/i10
Published by the American Institute of Physics.

Related Articles
Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas
Oscillating plasma bubbles. I. Basic properties and instabilities
Kink modes and surface currents associated with vertical displacement events
Internal disruptions and sawtooth like activity in Large Helical Device
Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability

Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/
Journal Information: http://pop.aip.org/about/about_the_journal
Top downloads: http://pop.aip.org/features/most_downloaded
Information for Authors: http://pop.aip.org/authors
Modeling of diamagnetic stabilization of ideal magnetohydrodynamic instabilities associated with the transport barrier

G. T. A. Huysmans
Association EURATOM–CEA Cadarache, 13108 St. Paul-Lez-Durance, France

S. E. Sharapov
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OXON OX14 3EA, United Kingdom

A. B. Mikhailovskii
Institute for Nuclear Fusion, RRC Kurchatov Institute, Kurchatov Sqr. 1, Moscow 123182, Russia

W. Kerner
European Commission, D.G. XII, Square de Meeus 8, Brussels, Belgium

(Received 22 May 2001; accepted 26 June 2001)

A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal magnetohydrodynamics (MHD) code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω_{ni}, on line ideal MHD eigenmodes in tokamaks in general toroidal geometry. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues $|\gamma| \equiv \omega_{ni}$ in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω_{ni} spectrum and stability limits of the internal kink mode, $n/m = 1/1$, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for high confinement mode (H-mode) plasmas with the ω_{ni} effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω_{ni} stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of the Joint European Torus (JET), P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11 optimized shear discharges, the stabilizing influence of ion diamagnetic frequency on the $n=1$ global pressure driven disruptive mode is studied. A strong radial variation of ω_{ni} is found to significantly decrease the stabilizing ω_{ni} effect on the $n=1$ mode, in comparison with the case of constant ω_{ni} estimated at the foot of the internal transport barrier. © 2001 American Institute of Physics. [DOI: 10.1063/1.1398573]

I. INTRODUCTION

Ideal magnetohydrodynamic (MHD) instabilities play an important role in limiting plasma performance in tokamaks. A careful assessment of the stabilizing effects on ideal MHD modes is important for controlling these instabilities and obtaining highest plasma parameters and fusion yield. In order to compute the ideal MHD instabilities the ideal MHD eigenvalue code MISHKA-1 was developed 1 and successfully applied to Joint European Torus (JET 25) discharges. 2,3 It was established in Refs. 2 and 3 that the effect of MHD instabilities on plasma confinement is most dramatic if the MHD modes are associated with the so-called “transport barriers,” which suppress the thermal plasma transport in a narrow region and control the high confinement of the plasma. 4,5 On JET, two broadly different scenarios of high plasma confinement with transport barriers are established: the high confinement mode (H-mode) 4 and the optimized shear scenario. 5

In an H-mode discharge, a transport barrier is formed at the plasma edge just inside the magnetic separatrix where the density and temperature vary strongly over very short distances of few centimeters. The edge-localized modes (ELMs) of the first type excited in the edge transport barrier lead to a rapid degradation of plasma performance in a region much broader than the edge only, and they are usually the most limiting MHD events of the plasma performance in H-mode. Studies $^{2,5,6–8}$ of the MHD stability at the plasma edge have identified the ideal ballooning modes 8,5 and low-n kink (peeling) modes 5,6 driven by the pressure gradient at the edge and by the edge currents (including bootstrap current) as the MHD modes, which determine stability of the ELMs. In the optimized shear scenario, 5 an internal transport barrier is triggered close to the plasma center and expands at later times. Large radial gradients of ion temperature, up to 150 keV/m, and radial gradients of plasma pressure, up to 10^6 Pa/m, were measured in best discharges with internal transport barriers on JET. 5 Such discharges often end with disruptions, which are attributed to a global ideal MHD kink mode with toroidal mode number $n=1$ driven by the strong
peaking of the pressure profile at the internal transport barrier.

Since the ideal MHD modes in the barriers are associated with large pressure gradients, more comprehensive analysis of the stability margins must take into account all the relevant pressure-dependent effects, which can modify the stability conditions. One of the well-known effects, which can dramatically modify the stability of ideal MHD modes is the finite gyroradius effect of the ion diamagnetic drift frequency, \(\omega_{\text{gi}} = (m/r_0) \cdot (T_i/eB_0) \cdot (d \ln p_i / dr) \cdot (1/p_i) \cdot (d r / dr) \), which can stabilize ideal MHD modes if their growth rate \(\gamma_{\text{MHD}} \) is comparable to or lower than \(\omega_{\text{gi}} \) (see Refs. 7–9 and references therein):

\[
\gamma_{\text{MHD}} \leq \omega_{\text{gi}}. \tag{1}
\]

Here \(T_i, e_i, \) and \(p_i \) are temperature, charge, and pressure of the thermal ions of the plasma, \(B_0 \) is the equilibrium magnetic field, \(r \) is the radial coordinate, and \(m \) is the poloidal mode number. Introducing the characteristic ion-pressure gradient scale \(L_p = (d \ln p_i / dr)^{-1} \), and representing

\[
\gamma_{\text{MHD}} = V_{T_i} / R_{\text{eff}}, \tag{2}
\]

where \(R_{\text{eff}} \) is an effective curvature radius of the magnetic field lines, one can rewrite (1) in the form

\[
n_q \frac{\rho_i}{L_p} \geq \frac{r}{R_{\text{eff}}}, \tag{3}
\]

where \(\rho_i = V_{T_i} / \omega_{\text{Bi}} \) is the ion Larmor radius, \(\omega_{\text{Bi}} = eB_0 / M_i \) is the ion cyclotron frequency, \(V_{T_i} = (T_i / M_i)^{1/2} \), \(M_i \) is the ion mass, \(n \) is the toroidal mode number, and \(q(r) = r B_T / |\varepsilon p_i B_0| \) is the safety factor (\(R_0 \) is the major radius of the torus, \(B_T \) and \(B_0 \) are the values of toroidal and poloidal magnetic fields).

One can see from (3) that the efficiency of the \(\omega_{\text{gi}} \) stabilization is determined by different reasons for modes with different characteristic parameters. For example, the ideal MHD internal kink mode,\(^1\,10\) which is characterized by the toroidal and dominant poloidal mode numbers \(n/m = 1/1 \), can be easily stabilized by the ion diamagnetic drift effect to the small values of the growth rate. In this case inequality (3) is satisfied due to the very small "effective" curvature in toroidal geometry, which is of the order of

\[
\frac{1}{R_{\text{eff}}} \approx \frac{\varepsilon^2}{R_0}, \tag{4}
\]

where \(\varepsilon = r / R_0, \) \(r = r_1 \) is the radius of magnetic surface \(q(r_1) = 1 \). Then (3) reduces to the following estimate of the plasma parameters at which the ion diamagnetic effect becomes important for the internal kink mode:

\[
\frac{\rho_i}{L_p} > \frac{\varepsilon^2}{R_0}, \tag{5}
\]

where \(\rho_i \) and \(L_p \) have to be estimated at the position of the inertial layer of the kink mode, i.e., at \(q(r_1) = 1 \).

In the case of high-\(n \) ballooning modes and kink modes with high \(m, n \), the \(\omega_{\text{gi}} \) stabilization plays an important role since the left-hand side of (3) is proportional to a large value \(n \). As an estimate for \(1/R_{\text{eff}} \), one can use in this case

\[
\frac{1}{R_{\text{eff}}} \approx \frac{\varepsilon}{R_0}. \tag{6}
\]

so that an estimate for maximum \(n, n_{\text{max}} \), above which one could expect a stabilization of high-\(n \) modes due to the \(\omega_{\text{gi}} \) effect, takes a form

\[
n_{\text{max}} \approx \frac{\varepsilon^2 L_p}{q p_i}. \tag{7}
\]

Considering the relevant plasma parameters typical of the edge transport barrier just inside the separatrix in the \(H \)-mode and the plasma parameters typical of the internal transport barriers in the shear optimized scenario, one finds that the condition (1) is satisfied in many cases. Thus, generally speaking, the \(\omega_{\text{gi}} \) effect must be taken into account for stability analysis of ideal MHD modes associated with the transport barriers. Recent analyses\(^7\)–\(^8\) confirm the importance of the \(\omega_{\text{gi}} \) effect on ideal ballooning modes in the edge transport barriers. It was shown in Ref. 7 with the use of Braginskii equations and simple analytical model, that the ion diamagnetic drift and the finite radial localization of the pedestal pressure gradient change significantly the pressure gradient threshold for ideal ballooning modes. Recent analytical study\(^8\) devoted to the stability of ideal ballooning modes in the edge transport barrier, also has underlined the importance of strong radial variation of the ion diamagnetic frequency. In order to incorporate the effect of strong radial variation of \(\omega_{\text{gi}} \), a global mode analysis was developed for the ballooning approach.\(^8\)

The goal of the present paper is to develop an ion diamagnetic drift modification of the ideal MHD spectral code MISHKA-1.\(^1\) The modified drift MHD code (called MISHKA-D) should allow to compute stable and unstable eigenmodes with eigenvalues \(|\gamma| = \omega_{\text{gi}} \) in full toroidal geometry and with strong radial variation in the ion diamagnetic frequency, \(\omega_{\text{gi}} \), taken into account. The MISHKA-D model and numerical method of solving the MISHKA-D equations are presented in Secs. II and III, respectively.

The MISHKA-D code is benchmarked against analytical results for the \(\omega_{\text{gi}} \) effect on the \(n/m = 1/1 \) internal kink mode in Sec. IV. A short description of the analytical results is given. Auxiliary codes based on the MISHKA-D code, i.e., the antenna version of the MISHKA-D and the continuum solver based on the MISHKA-D code, are tested for the internal kink mode.

The main application of the new MISHKA-D code is the analysis of the \(\omega_{\text{gi}} \) stabilization of ballooning and kink (peeling) modes localized in the edge pedestal of \(H \)-mode discharges (Sec. V). The MISHKA-D code allows accurate calculations of finite-\(n \) ballooning and kink modes up to very large toroidal mode numbers \(n < 50–100 \) in full toroidal geometry and for arbitrary plasma shapes. In order to quantify the relevance of the ion-diamagnetic stabilization, a JET high performance \(H \)-mode discharge is analyzed.

The \(\omega_{\text{gi}} \) stabilization of the disruptive \(n = 1 \) pressure-driven mode in optimized shear discharge with internal transport barrier is considered in Sec. VI.

Conclusions are presented in Sec. VII.
II. THE MODEL

A. Starting equations

Starting equations of the MISHKA-D model are, on the one hand, a generalization of the ideal MHD equations used in the MISHKA-1 code,1 and, on the other hand, a reduced set of the generalized MHD equations.11 In contrast to Ref. 1, but by analogy with Ref. 11, we take into account the gyroviscosity term in the equation of the plasma motion across the magnetic field

\[\rho \frac{d\mathbf{V}}{dt} = -\nabla p + j \times \mathbf{B} + \nabla \cdot \mathbf{\alpha}, \]

(8)

where \(\mathbf{\alpha} \) is the gyroviscosity tensor, \(\frac{d}{dt} = \partial/\partial t + \mathbf{V} \cdot \nabla \), \(\rho = M_1 n_1 \), \(\mathbf{V}, p \) are the plasma mass density, velocity, and pressure, \(j \) is the electric current density, \(\mathbf{B} \) is the magnetic field, \(M_1 \) is the ion mass, \(n_1 \) is the plasma number density. We take the time dependence of the perturbations in the form \(\exp(\lambda t) \) and linearize (8) taking into account that the gyroviscosity term compensates the part of the term with \(d\mathbf{V}/dt \) related to the ion diamagnetic drift velocity in (8) (see Ref. 11 for details). The linearized version of (8) then reduces to (cf. Refs. 1 and 11)

\[\lambda M_1 n_1 \mathbf{\tilde{V}} = -\nabla \tilde{p} + \mathbf{\tilde{H}}, \]

(9)

where

\[\mathbf{\tilde{H}} = (\nabla \times \mathbf{B}_0) \times \mathbf{B}_0 - \mathbf{B}_0 \times (\nabla \times \mathbf{B}), \]

(10)

the subscript zero and tilde denote the equilibrium and perturbed values. We only consider projections of (9) perpendicular with respect to the equilibrium magnetic field, since only these projections are important for our problem.

The linearized perpendicular Ohm’s law is taken allowing for the ion pressure gradient and the equilibrium diamagnetic drift velocity \(\mathbf{V}_0 \),

\[n_0 (\mathbf{\tilde{E}} + \mathbf{\tilde{V}} \times \mathbf{B}_0) + n_0 \mathbf{V}_0 \times \mathbf{B}_0 - \tau \nabla \tilde{p}_i = 0, \]

(11)

where

\[\mathbf{V}_0 = \frac{\tau}{\rho_0 B_0} B_0 \times \nabla p_{0i}, \quad \tau = \frac{1}{e_1 R_M} \left(\frac{M_1}{\mu_0 n_{0i}} \right)^{1/2} \frac{1}{\omega_{Bi} \tau_a}. \]

(12)

Here \(\mathbf{\tilde{E}} \) is the perpendicular perturbed electric field, \(p_{0i} \) and \(\tilde{p}_i \) are the equilibrium and perturbed ion pressures, \(\rho_0 \) is the equilibrium mass density, \(e_1 \) is the ion charge, \(n_{0i} \) is the ion density on axis, \(\tau_a = R_a / V_A(0) \), \(V_A(0) = B_0(0)/\sqrt{\mu_0 \rho_0(0)} \) is the Alfvén velocity on the magnetic axis. For a given pressure profile, all the nonideal MHD terms are proportional to the dimensionless parameter \(\tau \), the inverse of the normalized ion-cyclotron frequency \(\omega_{Bi} \).

By analogy with Ref. 11, we take into account the term with \(\mathbf{V}_0 \) in the continuity equation

\[\lambda \tilde{n} = -\nabla \cdot (n_0 \mathbf{\tilde{V}} + n \mathbf{V}_0). \]

(13)

The perturbed ion temperature \(\mathbf{T}_i \) is governed by the ion energy equation allowing for the drift part of the heat flux \(\mathbf{q}_i \),

\[\lambda n_0 \mathbf{T}_i = -n_0 \mathbf{\tilde{V}} \cdot \nabla T_{0i} - (\Gamma_i - 1) n_0 \mathbf{\tilde{V}} \cdot \nabla \mathbf{\tilde{V}} - \mathbf{V}_0 \cdot \nabla \mathbf{T}_i \]

\[-(\Gamma_i - 1) \nabla \cdot \mathbf{\tilde{q}}_i, \]

(14)

where

\[\nabla \cdot \mathbf{\tilde{q}}_i = \tau \left[\frac{\Gamma_i}{(\Gamma_i - 1)} \nabla \left(\frac{n_0 T_{0i} + n_0 \mathbf{T}_i}{B_0^2} \mathbf{B}_0 \times \nabla T_{0i} \right) \right. \]

\[+ \left. \left(\frac{n_0 T_{0i}}{B_0^2} \mathbf{B}_0 \times \nabla \mathbf{T}_i \right) \right], \]

(15)

\(T_{0i} \) is the equilibrium ion temperature, \(\Gamma_i \) is the adiabatic exponent.

The electron energy equation is written in the approximation of infinite parallel electron heat conductivity

\[\mathbf{B}_0 \cdot \nabla \mathbf{\tilde{E}} + \mathbf{\tilde{B}} \cdot \nabla T_{0e} = 0, \]

(16)

where \(\mathbf{\tilde{E}} \) and \(T_{0e} \) are the perturbed and equilibrium electron temperature.

B. Transformations of starting equations

We obtain from (11),

\[\mathbf{V}_L = \mathbf{V}_E - \frac{n_0}{n_0} \mathbf{V}_0 + \frac{\tau}{n_0 B_0} \mathbf{B}_0 \times \nabla \tilde{p}_i, \]

(17)

where the subscript \(\perp \) denotes the vector components perpendicular to the equilibrium magnetic field \(\mathbf{B}_0 \) and \(\mathbf{V}_E \) is the perturbed cross-field velocity, given by

\[\mathbf{V}_E = \frac{\mathbf{\tilde{E}} \times \mathbf{B}_0}{B_0^2}. \]

(18)

Assuming the plasma motion due to the cross-field velocity to be incompressible,

\[\nabla \cdot \mathbf{\tilde{V}}_E = 0, \]

(19)

and neglecting the magnetic field curvature effects, one obtains using (15) and (17),

\[\nabla \cdot \mathbf{\tilde{V}} = \frac{\tau}{n_0 B_0} \mathbf{B}_0 - (\nabla n_0 \times \nabla \mathbf{\tilde{V}} + \nabla n \times \nabla T_{0i}), \]

(20)

\[(\Gamma_i - 1) \nabla \cdot \mathbf{\tilde{q}}_i = -\Gamma_i p_{0i} \nabla \cdot \mathbf{\tilde{V}}. \]

(21)

Then (13) and (14) reduce to

\[\lambda \tilde{n} = -\tilde{\mathbf{E}} \cdot \nabla n_0, \]

(22)

\[\lambda \mathbf{T}_i = -\mathbf{E}_E \cdot \nabla T_{0i}. \]

(23)

We then express the electric field by analogy with Ref. 12 as

\[\mathbf{E} = -\lambda \mathbf{\tilde{A}}, \]

(24)

where \(\mathbf{\tilde{A}} \) is a perturbed vector potential. We use the coordinate system \((s, \theta, \phi) \) described in Ref. 1 (\(s \) is the dimensionless radial coordinate marking the magnetic surfaces, \(\theta \) is the poloidal coordinate, \(\phi \) is the toroidal angle). Then we obtain from (18),
\[\lambda A_1 = \dot{V}_E, \]
\[\lambda \dot{A}_2 = -V^1_E, \]
(25)
(26)

where
\[\dot{V}_E = [\ddot{V}_E \times B_0]_1, \quad \dot{A}_2 = [\ddot{A} \times B_0] / B_0^2. \]
(27)
The subscript and superscript 1 denote the first (i.e., s) covariant and contravariant components, respectively. Substituting Eq. (26) into (22) and (23), we find
\[\ddot{n} = n_o \dot{A}_2, \quad \ddot{T}_i = T_0 \dot{A}_2, \]
(28)
where the prime denotes the derivative with respect to s.

We neglect the parallel perturbed electric field, so that in accordance with (18),
\[\ddot{n} = 0 \cdot \dot{A}_2. \]
(29)
Then, according to Ref. 1,
\[\ddot{B}_1 = -B_0 \cdot \nabla \dot{A}_2. \]
(30)
Substituting (30) into (16), we find that
\[\ddot{T}_i = T_0 \dot{A}_2. \]
(31)
It follows from (28) and (31) that
\[\ddot{p} = p_o \dot{A}_2, \]
(32)
where \(p_o = n_o (T_0 + T_o) \).

Taking into account (17) and (31), the momentum equation (9) can be written in the form
\[\lambda \rho_0 \left(\ddot{V}_E + \frac{\tau}{B_0} \nabla \dot{A}_2 + \frac{\nabla (A_1 \cdot V^1_E)}{n_0} \right) = -\nabla (p_o \dot{A}_2) + \ddot{H}. \]
(33)
Using (26), we express \(\lambda \dot{A}_2 \) in terms of \(V^1_E \) and move the relevant term from the left-hand side of (33) to right-hand side of (33). Then the \((s, \theta) \)-covariant projections of the resulting equation lead to the following equations:
\[\lambda \rho_0 \left(g_{11} V^1_E + g_{12} \frac{\ddot{V}_E}{f q} \right) = \dot{\alpha}_1 - \frac{F}{R^2} \left(\frac{\partial}{\partial s} \left(f_q \dot{A}_2 \right) - \frac{\partial A_1}{\partial \theta} \right) \]
\[+ \frac{\rho_0}{f q} \left(-g_{11} \frac{p_o' \cdot \partial V^1_E}{n_0} \frac{\partial}{\partial \theta} + g_{12} \frac{V^1_E}{n_0} \right), \]
(34)
\[\lambda \rho_0 \left(g_{11} V^1_E + g_{22} \frac{\ddot{V}_E}{f q} \right) = \dot{\alpha}_2 - \frac{F}{R^2} \left(\frac{\partial}{\partial s} \left(f_q \dot{A}_2 \right) - \frac{\partial A_1}{\partial \theta} \right) \]
\[+ \frac{\rho_0}{f q} \left(-g_{12} \frac{p_o' \cdot \partial V^1_E}{n_0} \frac{\partial}{\partial \theta} + g_{22} \frac{V^1_E}{n_0} \right). \]
(35)
The functions \(\dot{\alpha}_1, \dot{\alpha}_2 \) were introduced in Ref. 1 as follows:
\[\dot{\alpha}_1 = J(j_0^2 B^3 - j_0^2 B^2) - \frac{F}{q R^2} \left(\frac{\partial}{\partial s} \left(J(M B^1 + N B^2) \right) \right) \]
\[+ \frac{F}{q R^2} \left(\frac{\partial}{\partial \theta} + \frac{q}{F} \frac{\partial}{\partial \phi} \right) \left(J(M B^{1} + N B^{2}) \right), \]
(36)
\[\dot{\alpha}_2 = J j_0^2 B^1 + \frac{F}{R^2} \frac{\partial}{\partial \phi} \left(J(M B^1 + N B^2) \right). \]
(37)
The coefficients \(L, M, N, G \) are defined by
\[L = g_{11}/J, \quad M = g_{12}/J, \quad N = g_{22}/J, \quad G = g_{33}/J = F/f q, \]
(38)
where the Jacobian \(J = f q R^2 / P \), \(f = 2 s \psi_1 \) (\(\psi_1 \) is the poloidal flux at the boundary), \(F = R B_0 \) and \(g_{ik} \) with \((i,k) = (1,2,3) \) are the metric tensor components. The perturbed magnetic field components \(B^2 \) and \(B^3 \) are related to \(A_1, \dot{A}_2 \) by (cf. Ref. 1)
\[\ddot{B}^2 = \frac{1}{J} \left[\frac{\partial}{\partial s} \left(f_q \dot{A}_2 \right) - \frac{\partial A_1}{\partial \theta} \right], \]
(39)
Thus, our model consists of the four equations (25), (26), (34), and (35) for the variables \(A_1, \dot{A}_2, V^1_E, V^2_E \). These equations differ from those used in MISHKA-1 by the last terms in the square brackets in the right-hand side of (34) and (35).

III. NUMERICAL METHOD

In the numerical scheme, we introduce new variables
\[X_1 = f q \ddot{V}, \quad X_2 = i \ddot{V}, \quad X_3 = i A_1, \quad X_4 = f q \dot{A}_2 \]
(40)
and solve (34), (35), (25), and (26) in their weak form by using the Galerkin method.\(^{12}\) The four unknown functions are Fourier expanded in both toroidal and poloidal angle; the structure of the functions in radial coordinate \(s \) is described in cubic Hermite and quadratic finite elements \(H(s) \), i.e., the same discretization as used in the Complex Alfvén Spectrum in TORoidal geometry code (CASTOR\(^{15}\)) is employed,
\[\tilde{A} = e^{\lambda t} e^{in \phi} \sum_{m=-\infty}^{+\infty} e^{im \theta} \sum_{v=1}^{N} (\tilde{A}_m)_v H_v(s), \]
(41)
where \(\tilde{A} \) is any function from the four functions above. Following the approach described in Ref. 12 we generate the weak forms by multiplying Eqs. (34), (35), (25), and (26) by \((\tilde{V})^* \), \((\tilde{V})^* f q, \tilde{A}_1^* \) and \(\dot{\tilde{A}}_2^* \) correspondingly and integrating over the volume \(J ds d \theta d \phi \). The weak forms are obtained then as follows:
\[\lambda N_1 = M_1 + \tau D_1, \quad \lambda N_2 = M_2 + \tau D_2, \]
(42)
\[\lambda N_3 = M_3, \quad \lambda N_4 = M_4, \]
(43)
where \(\tau \) is the dimensionless parameter, which characterizes the ion drift effect and is determined by (12), \(M_1, M_2 \) are the parts of weak forms related to the potential energy of the mode.
were used in order to reduce the number of variables from

\[M_1 = \int A(1,3)X_i^*X_3 + A(1',3) \frac{\partial X_i^*}{\partial s} X_3 + A(1,4)X_1^*X_4 \]

\[+ A(1',4) \frac{\partial X_1^*}{\partial s} X_4 + A(1,4')X_1^* \frac{\partial X_4}{\partial s} \]

\[+ A(1',4') \frac{\partial X_1^*}{\partial s} \frac{\partial X_4}{\partial s} \] ds d \vartheta, \hspace{2cm} (44) \]

\[M_2 = \int A(2,3)X_i^*X_3 + A(2,4)X_1^*X_4 \]

\[+ A(2,4')X_2^* \frac{\partial X_4}{\partial s} \] ds d \vartheta, \hspace{2cm} (45) \]

the weak forms \(N_1, N_2 \) correspond to the kinetic energy.

\[N_1 = \int (B(1,1)|X_1|^2 + B(1,2)X_i^*X_2) ds d \vartheta, \hspace{2cm} (46) \]

\[N_2 = \int (B(2,1)X_1^*X_2 + B(2,2)|X_2|^2) ds d \vartheta. \hspace{2cm} (47) \]

The weak forms \(N_3, N_4 \) and \(M_3, M_4 \) connect the vector potential with the plasma velocity.

\[N_3 = \int B(3,3)|X_3|^2 ds d \vartheta, \hspace{2cm} N_4 = \int B(4,4)|X_4|^2 ds d \vartheta, \hspace{2cm} (48) \]

\[M_3 = \int A(3,2)X_1^*X_2 ds d \vartheta, \hspace{2cm} (49) \]

\[M_4 = \int A(4,1)X_1^*X_1 ds d \vartheta. \hspace{2cm} (50) \]

Similar types of the weak forms were obtained in the MISHKA-1 code, with the only difference that (25) and (26) were used in order to reduce the number of variables from four to two. In contrast to the MISHKA-1 code, new terms \(D_1, D_2 \) corresponding to the drift effects appear now in the MISHKA-D code:

\[D_1 = \int \left[A(1,1)|X_1|^2 + A(1',1')X_i^* \frac{\partial X_i^*}{\partial s} \right] ds d \vartheta, \hspace{2cm} (50) \]

\[D_2 = \int \left[A(2,1)X_1^*X_1 + A(2,1')X_i^* \frac{\partial X_i^*}{\partial s} \right] ds d \vartheta. \hspace{2cm} (51) \]

The matrix elements \([\text{the coefficients in front of the quadratic combinations of the variables } X_i (i=1,2,3) \text{ and their radial derivatives in Eqs. (42)-(51) have to be computed from an equilibrium code (we use the equilibrium code HELENA[13]) by a mapping procedure. Details of the derivation and transformation of the matrix elements are explained in the Appendix.} \]

Analytic theory for MHD modes in the regime with \(|\gamma| \equiv \omega_{gi} \) shows that the \(\omega_{gi} \) stabilization manifests itself in the form of two modes with real frequencies, instead of the modes with imaginary frequencies \(\omega = \pm i \gamma_{\text{MHD}} \). Frequencies \(\omega_1 \) and \(\omega_2 \) of \(\omega_{gi} \) stabilized modes are given by

\[\omega_{1,2} = \frac{\omega_{gi}}{2} \pm \sqrt{\frac{\omega_{gi}^2}{4} - \gamma_{\text{MHD}}^2}. \hspace{2cm} (52) \]

It is seen from (52) that unstable modes with \(\text{Im}(\omega) > 0 \) can only occur if the value of \(\gamma_{\text{MHD}} \) associated with the potential energy of the perturbations becomes high enough to satisfy \(\gamma_{\text{MHD}} > \omega_{gi}/2 \). Until then only two stable modes can exist with frequencies, which start from \(\omega_1 \approx \omega_{gi} \), \(\omega_2 \approx \gamma_{\text{MHD}}/\omega_{gi} \), at small \(\gamma_{\text{MHD}} \) and merge at \(\omega_1 \approx \omega_2 \approx \omega_{gi}/2 \) as \(\gamma_{\text{MHD}} \) increases.

A. The benchmark

As a benchmark case for the MISHKA-D code, the stabilization of the \(n = 1 \) internal kink mode due to the ion-diamagnetic drift is analyzed. Analytically, the growth rate and frequency of the internal kink mode as a function of \(\omega_{gi} \), are described by (52). In order to test the MISHKA-D code, the eigenvalues of the internal kink mode are calculated self-consistently, varying the diamagnetic frequency through the parameter \(\tau \) introduced in (52), keeping the pressure profile constant. The equilibrium used is characterized by the pressure and current profiles: \(p' = p'(0)(1-\psi) \) and \(\langle j \rangle = j(0)(1-\psi) \), where \(\psi \) is a normalized poloidal flux. A circular plasma boundary is chosen, with the aspect ratio of \(R_0/a = 4 \). The poloidal beta and the safety factor on-axis values are, correspondingly, \(\beta_p = 8 \pi S(p)/\mu_B I_c^2 = 0.4 \) and \(q(0) = 0.75 \). This equilibrium is unstable with respect to the ideal MHD \(n = 1 \) internal kink mode. Here, \((p) \) is the volume averaged pressure, \(S \) the area of the poloidal cross section of the plasma, and \(I \) the total toroidal plasma current. The trajectory of the growth rate, \(\tau = \text{Re}(\lambda) \), and the frequency, \(\omega = \text{Im}(\lambda) \) of the two modes as a function of \(\tau \) is shown in Fig. 1. The behavior of the two modes is in good agreement with (52). At \(\tau = 0 \), one unstable and a stable, damped, mode exist, both with the same mode structure. With increasing \(\tau \), the frequency of the two modes increases linearly with \(\omega_{gi} \), while the growth and damping rates are decreasing. At \(\omega = \omega_{gi}/2 \) the two modes coalesce. Further increase in \(\omega_{gi} \) leads to two stable modes, one increasing, the other decreasing in frequency. The value of \(\omega_{gi} \) as evaluated at the surface from a toroidal analogue of (1):

\[\omega_{gi} = \tau \frac{nq(|\nabla \psi|)}{\rho(\psi)(B_0) \rho(\psi) \psi'}. \hspace{2cm} (53) \]

agrees within 5% with the value of \(\omega_{gi} \) determined from the linear increase of \(\text{Im}(\lambda) \) with \(\tau \) (the brackets \(\langle \cdots \rangle \) denote an averaging over the flux surface).

The variation of \(\omega_{gi} \) with \(\tau \) corresponds to a variation of the plasma density or magnetic field, which leaves the (normalized) equilibrium and thus the pressure unchanged. Varying the total pressure changes both the ideal MHD growth rate of the mode and the diamagnetic frequency. Figure 1(b) shows the frequency and growth rate as a function of the poloidal beta for both ideal and finite \(\omega_{gi} \). The ideal MHD internal kink mode is stable up to a poloidal beta of \(\beta_p \)
The effect of ion-diamagnetic drift ($\tau=0.02$) gives rise to two stable modes. However, the two stable modes only exist when the pressure is larger than the ideal MHD stability limit.

B. Auxiliary version of the MISHKA-D code for computing the Alfvén continuum

For lower values of the pressure the frequencies of the stable modes would lie inside the Alfvén continuum. The diamagnetic drift frequency modifies the Alfvén continuum in the low-frequency range by inducing "gaps" in the continuum at the intersection points between branches of oscillations $\omega = \pm k_{im}(r)V_{A}(r)$ and $\omega = \omega_{g,i}(r)$. The finite $\omega_{g,i}$ induces a gap in the continua of width from $\omega=0$ to $\omega = \omega_{g,i}$. In order to compute the continuum frequencies with $\omega_{g,i}$ effect for shaped equilibrium with arbitrary radial profiles of density, pressure and $q(r)$, a modified version of the MISHKA-D code, similar to the CSCAS code, was developed. The bottom of the gap as a function of β_p computed by the modified MISHKA-D is shown in Fig. 1(b). The radial structure of the continuum modified by $\omega_{g,i}$ is shown in Fig. 1(c). At the marginally stable value of the pressure of the ideal mode, one global mode comes out of the continuum with a frequency $\omega = \omega_{g,i}$, the second mode comes out of the continuum below the $\omega_{g,i}$ induced gap at $\omega=0$. With increasing pressure, the two modes coalesce when $\gamma = \omega_{g,i}/2$ and the internal kink becomes unstable ($\beta_p=0.308$).

C. The antenna version of the MISHKA-D code

In order to study global eigenmodes of finite frequency, which can be excited by external antenna, the antenna MISHKA-D code was developed similar to Refs. 16 and 17. This auxiliary version of the MISHKA-D code allows computing the plasma response to the wave field of the external

\[\omega = \pm k_{im}(r)V_{A}(r) \]
V. STABILITY OF IDEAL MHD MODES IN THE H-MODE EDGE TRANSPORT BARRIER

The pressure gradient in the transport barrier at the edge of an H-mode plasma is limited by MHD instabilities in the form of edge localized modes (ELMs). The relevant instabilities are ballooning modes driven by the edge pressure gradient and localized kink (peeling) modes driven by the edge current, which is due to both the bootstrap current and the Ohmic current related to the high edge electron temperature. Usually, experiments show that the pressure gradient in the H-mode edge pedestal is found to correspond to the first ballooning stability limit, and it follows the scaling with \(\alpha \) as \(\alpha = 4(q^2/eB_0^2)V^{1/2}(dp/dV) \) as expected for the ballooning limit. Under some conditions, e.g., at high shaping and/or high \(q(95) \), the pressure gradient is found to be significantly above the first ballooning stability limit. This may be explained by the access to the second zone of the ballooning stability, which is most easily achieved at high triangularity and high \(q(95) \) (high poloidal beta). An alternative explanation for the pressure gradients exceeding the ideal MHD first ballooning stability limit is the stabilizing influence of the ion-diamagnetic drift velocity. In Ref. 7, the influence of the diamagnetic drift was analyzed using the Braginskii equations in a flux tube geometry with a shifted circle equilibrium. In the following section, the influence of the diamagnetic drift on the finite-\(n \) ballooning stability and kink/peeling modes in the edge pedestal is analyzed in full toroidal geometry, using the linearized MHD equations as described above. Finally, in order to quantify the importance of the stabilizing influence of the diamagnetic drift, the stability limits of a JET hot-ion H-mode discharge are determined as functions of \(\omega_{gi} \).

A. Finite-\(n \) ideal ballooning modes in the edge pedestal

In ideal MHD, the stability limit of ballooning modes with \(n = \infty \) has been adopted in order to interpret the stability of edge pressure gradients in tokamaks. In this approach, the marginally stable pressure gradient does not depend on the width of the edge pedestal, and the width of the mode is assumed to be infinitely small. However, physically relevant instabilities have finite mode numbers and for finite-\(n \) ballooning modes with a finite mode width, the width of the edge pedestal is an important parameter in the stability limits.

In order to clarify the influence of the pedestal width on the stability of ideal MHD finite-\(n \) ballooning modes, we computed with the MISHKA-1 code the marginally stable pressure gradients and the growth rates as functions of the toroidal mode number and the width of the edge pedestal. The formulation of the MHD equations in the MISHKA codes and the accuracy of the higher order finite elements used in both the equilibrium (HELENA) and in the stability calculations allow toroidal mode numbers up to \(n < 100 \) to be analyzed in full toroidal geometry.

The equilibrium is characterized by a circular plasma boundary, an inverse aspect ratio \(R_0/a = 4 \), \(q \) at the boundary just below 4 and the poloidal beta of 1.0. The edge...
The flux surface average current density profile is given by finite-ballooning modes, we first study stability of the ideal MHD mating the influence of the diamagnetic drift frequency for ally stable pressure gradient can be well described by values of the width of the pedestal. The value of the margin-

\[\frac{\alpha_c}{b} = 0.025, 0.05, \text{ and } 0.10. \]

On the right, \(\alpha(n) - \alpha(n = \infty) \) as a function of \(n^{-1} \) shows a linear scaling.

\[\delta_b = (1 - \psi^{1/2}), \text{ and } \alpha_\infty \text{ is an extrapolated value to } n = \infty. \]

In (54), the \(1/n \) correction of the marginal \(\alpha \) is consistent with the conventional ballooning theory. It does not follow the modified scaling with \(n^{-2/3} \) for the edge ballooning mode, since the \(n^{-2/3} \) scaling is related to a linear variation of the growth rate of the \(n = \infty \) ballooning mode. However, for the pressure gradient profile in the barrier used in our analysis here, the \(n = \infty \) growth rate varies quadratically as a function of \(\psi \) (as in the conventional ballooning theory), with a maximum just inside the plasma boundary. In order to obtain a linear variation of the \(n = \infty \) growth rate the pressure gradient has to increase faster than the magnetic shear. It is also seen from (54), that the correction to \(\alpha_c \) is inversely proportional to the width of the edge pedestal, and narrow barriers are more stable with respect to finite-\(n \) ballooning modes, than wide barriers.

The width (as measured by the half-width of the envelope of the ballooning mode at the outboard mid-plane) of the computed eigenfunction of the ballooning mode in the edge pedestal, shown in Fig. 3, shows a strong scaling with the pedestal width and a weak dependence on the toroidal mode number. The half-width can be approximated by \(\delta_{HW} \approx \delta_b n^{-1/4} \), and it does not follow the \(n^{-1/2} \) dependence typical of the conventional ballooning theory, or the edge ballooning mode scaling \(n^{-2/3} \). The number of rational surfaces inside the half-width of the mode increases linearly with the toroidal mode number as opposed to the \(n^{1/2} \) scaling from the ballooning theory. This measure of the mode width in terms of the number of rational surfaces gives a mode width independent of toroidal mode number. The width of the ballooning mode basically fills up the width of the pedestal.

In the presence of the finite diamagnetic drift frequency, Eq. (52) shows that the increase in the marginal pressure gradient due to the diamagnetic stabilization is determined by the change in the growth rate of the ideal MHD mode with \(\alpha \) relative to the change in \(\omega_{ci} \) with \(\alpha \). The growth rates \(\text{Re}(\lambda) \) of the ideal MHD finite-\(n \) ballooning for \(\delta_b = 0.05 \), are shown in Fig. 5 as a function of the edge pressure gradient for several values of the toroidal mode number. The variation of the growth rate versus pressure gradient relative...
to the variation of the diamagnetic frequency determines the amplitude of the diamagnetic stabilization. Close to marginal stability, for the range of toroidal mode numbers considered ($10<n<40$), the growth rates of the ideal MHD high-n modes can be approximated by

$$\lambda^2 = c_2 n (\alpha - \alpha_c),$$ \hfill (55)

where constant c_2 does not depend on the pedestal width. For larger growth rates, $\lambda>0.05$, the growth rate is found to follow the scaling

$$\lambda^2 = c_0 (1 - c_1/n) (\alpha - \alpha_c).$$ \hfill (56)

[The α_c values in (55) and (56) have slightly different numerical values.] The constant c_0 is independent of the pedestal width, whereas c_1 shows a weak inverse dependence on δ_b. The scaling of the growth rate close to marginal stability in (56) is due to the free boundary contribution to the instability, and it strongly depends on the value of q at the boundary. However, the slope $\lambda^2 (\alpha)$ for larger growth rates away from marginal stability is independent of q at the boundary. This is illustrated in Fig. 5(b), which shows the growth rates for several values of q at the boundary. In computing Fig. 5, it was important to keep the parameter $\Delta = n(q_1 - q_{\text{int}})$ (Ref. 22) constant (q_1 is the value of q at the boundary and q_{int} is the integer value nearest to q_1), in order to keep the free boundary contribution constant as a function of the mode number. Since the ideal growth rates close to the marginal stability are easily stabilized by the diamagnetic drift, the behavior at large growth rates is more relevant for the stability limit in the presence of diamagnetic stabilization.

B. Diamagnetic stabilization of edge ballooning modes

We now use the MISHKA-D code in order to compute diamagnetic drift effect on the edge ballooning modes. Since the diamagnetic frequency increases linearly with the toroidal mode number, $\omega_{gi} = c_m \alpha \tau$, and the growth rate of the edge ballooning mode saturates with increasing n, a critical value for n should exist, above which the ballooning modes are stable when diamagnetic stabilization is taken into account. This is illustrated in Fig. 6, which shows the contours of the marginally stable values of the pressure gradient based on the scaling of the ideal MHD growth rate as a function of the toroidal mode number and the parameter τ. The maximum of each contour of α, as indicated in Fig. 6, corresponds to the most unstable mode number n. With increasing value of τ, and increasing ω_{gi}, the toroidal mode number of the most unstable mode rapidly decreases. An expansion in τ and $1/n$ of (55), yields for the dependence of the most unstable mode number, for small values of τ:

$$n_{\text{max}} = \left(\frac{2 \alpha \alpha_c}{\alpha \alpha_c c_m} \right)^{1/3} \tau^{-2/3}, \quad \alpha(n) = \alpha_c + \frac{3}{2} \frac{c_m}{n_{\text{max}}}. \hfill (57)$$

For a large enough value of τ, the higher-n modes become unconditionally stable for any value of the pressure gradient. Above a critical $\tau (~0.028$ in this case), all finite-n ballooning modes are stable. This situation is similar to the so-called second stable regime for $n = \infty$ ballooning modes where this regime can be obtained through shaping of the plasma boundary and/or at high poloidal beta. Figure 6(b) shows the influence of the width of the edge pedestal on the ballooning stability including the diamagnetic stabilization. Since the lower-n mode numbers are more stable at smaller widths of the pedestal, in accordance with (54), the influence of the diamagnetic stabilization is more important for small pedestal widths. The change in the marginally stable pressure gradient scales approximately with the pedestal width. Thus, the increase of the pressure due to the diamagnetic stabilization at the top of the pedestal is independent of the width of the pedestal. However, the access to the second stable regime, which can be induced by ω_{gi}, does depend on the pedestal width; a wide pedestal requires a larger value for τ.

After the discussion of the influence of the diamagnetic stabilization based on the ideal MHD growth rates and simple analytical expression (52), we compare our main conclusions with the numerical calculation of the stability limits with the MISHKA-D code. The computed behavior of the growth rate and frequency of an $n = 30$ ballooning mode with
increasing \(\omega_{\alpha i} \) is shown in Fig. 7. For the chosen shape of the edge transport barrier, the eigenvalue of the ballooning mode follows (52) closely, showing a good correlation between the simplified formula (52) and the computed eigenvalues. The marginally stable values for the pressure gradient as a function of the toroidal mode number, as calculated with the MISHKA-D code, (\(\tau \) varies from 0 to 0.006.)

C. Low-\(n \) kink (peeling) and ballooning modes

In addition to the medium to high-\(n \) pressure driven ballooning modes, the MHD stability of the \(H \)-mode edge pedestal is determined by low- to medium-\(n \) kink modes. The kink modes (also called peeling modes) are driven unstable by the edge current density, which consists mostly of bootstrap current due to the edge pressure gradient. Even in ideal MHD the edge pressure gradient is known to have a significant stabilizing effect on the kink modes, for pressure gradients below the ballooning limit.23 This stabilizing effect is largest for the lower-\(n \) kink modes. When the edge pressure gradient is of the order of the ballooning limit, the medium-\(n \) kink modes are destabilized by the pressure gradient. In this regime, the instability is a combination of a kink and a ballooning mode. The ideal MHD stability limits due to the pressure gradient and the edge current density are shown in Fig. 9. The equilibrium is the same model equilibrium as used in Figs. 3–8. To calculate the stability limits, the pressure gradient and the current density inside the edge pedestal have been varied independently. For each toroidal mode number more than 600 equilibria have been analyzed. With the choice of \(q \) at the boundary just below 4, the \(n=1 \) kink mode is the most unstable mode at low pressure gradients. In ideal MHD without diamagnetic stabilization, the stable operating space is limited by the \(n=1 \) mode in the direction of the edge current density and by the \(n \rightarrow \infty \) ballooning mode in the direction of the edge pressure gradient.

The low-\(n \) stability limits including the ion-diamagnetic drift (\(\tau=0.02 \)), as computed with the MISHKA-D code, are also shown in the edge stability diagram, Fig. 9. Comparison with the ideal MHD stability limits clearly shows the additional stabilizing effect of the pressure due to the diamagnetic drift. At pressure gradients close to the ideal ballooning limit the stabilizing effect of the diamagnetic drift on the low-\(n \) kink modes is of the same order for the different mode numbers. This is because both the growth rate and the diamagnetic frequency increase linearly with mode number.

The stable space with the diamagnetic drift included is still limited by the \(n=1 \) kink mode in the direction of the edge current density but the highest stable edge current is almost a factor of 2 higher. At this point, the stability limits of \(n=1, 2, 4 \), and 8 modes are very similar. The pressure gradient is now limited by the \(n=8 \) mode but at a value
Vi significantly above the ideal MHD ballooning limit.

(For this circular equilibrium the second stable regime for ideal ballooning modes exists only for \(j_1/j_0 > 0.42 \) and is not accessible due to the low-\(n \) stability limits.)

D. Stability of the edge barriers in JET hot-ion H-mode

In order to quantify the importance of the \(\omega_{ai} \) stabilization for typical tokamak parameters, the stability limits due to kink and ballooning modes have been calculated for the edge barrier of JET hot-ion H-mode DT discharge (pulse \#42677) at the time of maximum fusion performance. The pressure profile and the current density profile are taken from transport simulation of this discharge with the JETTO code.24 Figure 10 shows the typical large edge pressure gradient and the local increase in the edge current density. The width of the edge transport barrier is about 4 cm. The relevant stability limits for this discharge are plotted in Fig. 10 as a function of \(\tau \). The maximum edge current density is limited by \(n = 2 \) kink (peeling) mode, localized inside the edge pedestal. The increase in the marginally stable edge current due to the diamagnetic stabilization is found to be to first order linear in \(\tau \), due to the linear dependence of the growth rate on the edge current density. At a density of \(n = 3 \times 10^{19} \) m\(^{-3} \) and the relevant parameter \(\tau = 0.011 \), the marginally stable value of the edge current density is increased by 35\% as compared to the ideal MHD limit. At \(\tau = 0.011 \), the critical pressure gradient is limited by an \(n = 10-15 \) ballooning mode at a pressure gradient which is about 30\% higher than the \(n = \infty \) ideal MHD ballooning limit. For the ballooning limit, for each individual toroidal mode number, the increase of the marginally stable pressure gradient scales quadratically in \(\tau \) for small values of \(\tau \). However, considering all toroidal mode numbers gives a more linear dependence because the most unstable mode number goes down with increasing \(\tau \) (see Fig. 10). Thus, both the kink and ballooning limits in the edge pedestal have significant dependence on the density due to stabilization by the ion-}

\[\text{VI. Stability Limit in Shear-Optimized Scenarios} \]

The main MHD limitation in shear-optimized scenarios is due to the ideal MHD \(n = 1 \) global pressure driven mode, described in detail in Ref. 3. For this mode, the effect of radial variation of the diamagnetic drift frequency \(\omega_{ai} \) is very important, due to the global character of the mode eigenfunction, and very sharp pressure gradients.

For typical plasma profiles in JET shear-optimized scenario (pulse \#40572), the eigenvalue and the mode structure computed by the MISHKA-D code is shown in Fig. 11. The behavior of this mode as a function of \(\tau \) does not follow the simple dispersion relation (52). The mode is not completely stabilized for any value of \(\tau \) and the frequency of the mode has a maximum as a function of \(\tau \), see Fig. 11(a). This behavior is related to the large variation of \(\omega_{ai} \) at the different rational surfaces, due to the large pressure gradients at or inside the transport barrier. One consequence is that the marginally stable mode has no frequency. Complete stabilization could, in principle, be obtained when the density profile balances the radial change in the pressure gradient such that \(\omega_{ai} \) is relatively constant as a function of radius. However, using the estimate typical of the ideal MHD growth rates, \(\lambda^2 \propto (\beta_p - \beta_{pm}) \), the increase in the marginally stable beta would scale only quadratically with \(\tau \). Thus, the influence on the ion drift velocity on the \(n = 1 \) stability limit in shear-optimized discharges is very small, in spite of the large value of the ion diamagnetic frequency \(\omega_{ai} \) calculated locally at the foot of the internal transport barrier. This is consistent with the good agreement between the calculated ideal MHD stability limits and the observed disruptive stability limit in the shear-optimized scenarios, previously analyzed in Ref. 3.

\[\text{VII. CONCLUSIONS} \]

Equations have been derived which extend the one-fluid ideal MHD model to include the effect of the ion-}

\[\text{diamagnetic drift, which is important for typical plasma parameters in the transport barriers. These equations have been implemented as an extension of the ideal MHD code} \]
MISHKA-D. The new MISHKA-D code allows us to perform an accurate self-consistent computation of both stable and unstable eigenmodes with eigenvalues \(|\gamma| = \omega_{gi} \) up to a very large toroidal mode number \(n \approx 50–100 \) in full toroidal geometry. The \(\omega_{gi} \) spectrum of the \(n = 1 \) internal kink eigenmodes computed as a benchmark of the MISHKA-D code shows a good agreement with the analytic theory. In order to perform a comprehensive analysis of the \(\omega_{gi} \) spectrum and to compute the plasma response to the drive from external antenna, two auxiliary versions of the MISHKA-D code were also developed, the continuum solver similar to CSCAS code, and the antenna MISHKA-D code similar to Refs. 16 and 17.

The MISHKA-D code has been used to analyze the stabilizing influence of \(\omega_{gi} \) effect on the stability limits of finite-\(n \) ballooning and low-\(n \) kink (peeling) modes in the transport barriers of \(H \)-mode discharges. Both the kink and ballooning modes show a significant stabilization due to the ion diamagnetic drift. For a given pressure profile, the amplitude of the ion diamagnetic drift terms is proportional to the parameter \(\tau \), the ion-cyclotron frequency normalized to the Alfvén frequency. Since this parameter scales with the major radius and density as \(R_0^{-1} n_{oi}^{-1/2} \), the effect is strongest at low plasma densities in smaller tokamaks. Consequently, the edge stability limits depend on the density, being more stable at lower density. For the specific JET hot-ion \(H \)-mode discharge analyzed, at the density of the edge pedestal \(3 \times 10^{19} \) m\(^{-3} \), an increase of about 30% in the plasma pressure threshold was found for both the ballooning and kink modes due to the ion diamagnetic drift effect. Due to the scaling of the growth rate of the finite-\(n \) ballooning modes with the width of the edge pedestal, the stabilizing effect is found to be largest for small pedestal widths.

By including the diamagnetic drift in the stability calculations of the finite-\(n \) ideal ballooning modes, the highest \(n \) modes (which are the most unstable modes in ideal MHD) are stabilized first. The most unstable ballooning mode is found to be a medium-\(n \) mode whose exact mode number depends on the parameter \(\tau \) determined by the density in the edge transport barrier. For large enough values of \(\tau \) a second stability zone is obtained where the finite-\(n \) ballooning modes are stable for any value of the mode number \(n \) and pressure gradient. The numerical analysis has shown, that the radial structure of the finite-\(n \) ballooning mode in the edge pedestal differs from what one would expect from the conventional ballooning theory (or the modified theory for the plasma edge\(^{22} \)). The width of the mode depends mostly on the width of the high pressure gradient region in the edge pedestal, and the mode fills the whole width of the pedestal. The mode width depends only weakly on the toroidal mode number. Usually, the effect of an unstable ballooning mode is assumed to be benign, leading to a soft limit to the pressure gradient. This scenario is based on considering the \(n \rightarrow \infty \) ideal ballooning modes and taking into account their strong localization. However, considering the finite-\(n \) ideal ballooning modes at finite \(\omega_{gi} \), a medium-\(n \) ballooning mode with a mode width of the order of the edge pedestal is found to be the most unstable, and at a crossing of the ballooning limit this mode may well lead to a discrete ELM event.

For JET optimized shear discharges with internal transport barrier, the \(\omega_{gi} \) effect on the disruptive \(n = 1 \) global pressure driven kink mode is found to be weak, due to the effect of radial variation of the ion diamagnetic frequency \(\omega_{gi} \). This result is in agreement with the good correlation between the observed stability limits due to disruptions and the calculated ideal MHD stability limits.\(^3\)

ACKNOWLEDGMENTS

This work was partly performed under the European Fusion Development Agreement. V. V. Parail and G. Corrigan are gratefully acknowledged for the JETTO results.

APPENDIX: DERIVATION AND TRANSFORMATION OF THE MATRIX ELEMENTS

In order to illustrate the procedure of obtaining the matrix elements we consider the quadratic form (42). We start from the expression

\[
N_1 = \int \rho_0 \frac{R^2}{f q F^2} (g_{11} X_1 - i g_{12} X_2) X_1^* \, ds \, d\vartheta .
\]
(A1)

Comparison of (A1) and (46) gives the matrix elements

\[
B(1,1) = \rho_0 \frac{R^2 g_{11}}{f q F}, \quad B(1,2) = - i \rho_0 \frac{R^2 g_{12}}{f q F} .
\]
(A2)
The metric tensor components \(g_{ik} \) can be obtained from the known expressions for the associated metric components \(g^{ik} \):

\[
\begin{align*}
g^{11} &= |\nabla s|^2, & g^{12} &= g^{21} = \nabla s \cdot \nabla \vartheta \\
g^{22} &= |\nabla \vartheta|^2, & g^{33} &= 1/R^2.
\end{align*}
\]

(A3)

Taking into account the relation

\[
g_{ik} = (-1)^{i+k} M_{ik}/J^2,
\]

(A4)

where \(M_{ik} \) is the minor of \(g^{ik} \), we obtain

\[
\begin{align*}
g_{11} &= \frac{J^2}{R^2}|\nabla \vartheta|^2, & g_{12} &= g_{21} = -\frac{J^2}{R^2} \nabla s \cdot \nabla \vartheta, \\
g_{22} &= \frac{J^2}{R^2}|\nabla s|^2, & g_{33} &= R^2.
\end{align*}
\]

(A5)

Since the equilibrium code HELENA does not directly compute the function \(|\nabla \vartheta|^2 \), we express this function by using the condition

\[
J^2 = |g_{ik}| = (g_{11} g_{22} - g_{12}^2) R^2,
\]

(A6)

where \(|g_{ik}| \) is the determinant of the metric tensor. Then we obtain

\[
\begin{align*}
g_{11} &= \frac{1}{|\nabla s|^2} + \frac{J^2}{R^2} \frac{(\nabla s \cdot \nabla \vartheta)^2}{|\nabla s|^2},
\end{align*}
\]

(A7)

In addition, since the HELENA code computes \(\nabla \psi \), we use the relation

\[
\nabla s = \nabla \vartheta f,
\]

(A8)

in order to obtain \(\nabla s \). As a result, we transform the matrix components \(g_{ik} \) \((i,k = 1,2)\) to

\[
\begin{align*}
g_{11} &= \frac{f^2}{|\nabla \psi|^2} + \frac{f^2 q^2 R^2}{F^2} \frac{(\nabla \psi \cdot \nabla \vartheta)^2}{|\nabla \psi|^2}, \\
g_{12} &= g_{21} = -\frac{f q^2 R^2}{F^2} \nabla \psi \cdot \nabla \vartheta, \\
g_{22} &= \frac{q^2 R^2}{F^2} |\nabla \psi|^2.
\end{align*}
\]

(A9a)

Then (A2) reduces to

\[
\begin{align*}
B(1,1) &= \rho_0 \frac{f R^2}{q F} \left(\frac{1}{|\nabla \psi|^2} + \frac{q^2 R^2}{F^2} \frac{(\nabla \psi \cdot \nabla \vartheta)^2}{|\nabla \psi|^2} \right), \\
B(1,2) &= i \rho_0 \frac{q R^4}{F^2} \nabla \psi \cdot \nabla \vartheta.
\end{align*}
\]

(A10a)

Similarly, one obtains the remaining elements of the \(B \) matrix:

\[
\begin{align*}
B(2,1) &= -B(1,2), \\
B(2,2) &= \rho_0 q R^4 \frac{1}{F^2} |\nabla \psi|^2, \\
B(3,3) &= B(4,4) = 1.
\end{align*}
\]

(A11a)

The matrix elements on the right-hand side of (44) are

\[
\begin{align*}
A(1,3) &= -\frac{in}{F} \cdot (2\bar{m} - m - n q) (\nabla \psi \cdot \nabla \vartheta) + \frac{n}{f q F} \frac{dF}{ds} \left(\frac{dF}{ds} \right), \\
&-2F \frac{dq}{ds} |\nabla \psi|^2 - \frac{\partial |\nabla \psi|^2}{\partial s} + \frac{m}{f q} \frac{dF}{ds}.
\end{align*}
\]

(A12a)

\[
A(1',3) = \frac{n}{f q} |\nabla \psi|^2 - \frac{m F}{f q}.
\]

(A12b)

\[
A(1,4') = \frac{1}{f q F^2} \frac{dF}{ds} \left(\frac{2F}{f q} \frac{dq}{ds} \frac{dF}{ds} \right) |\nabla \psi|^2 \\
+ 2 i \frac{\bar{m} - m}{F q} \frac{dq}{ds} \nabla \psi \cdot \nabla \vartheta + \frac{f}{F q} (m + n q) \times (\bar{m} + n q) \frac{(\nabla \psi \cdot \nabla \vartheta)^2}{|\nabla \psi|^2} \\
+ \frac{1}{f q^2 F} \frac{dq}{ds} \frac{\partial}{\partial s} |\nabla \psi|^2,
\]

(A12c)

\[
A(1',4) = \frac{m + n q}{F q} \nabla \psi \cdot \nabla \vartheta - \frac{1}{f q^2 F^2} \frac{dF}{ds} |\nabla \psi|^2.
\]

(A12d)

\[
A(1,4') = -\frac{2 \bar{m} - m + n q}{F q} \nabla \psi \cdot \nabla \vartheta - \frac{1}{f q^2 F^2} \left(\frac{2F}{f q} \frac{dq}{ds} \right) |\nabla \psi|^2 \\
- \frac{dF}{ds} |\nabla \psi|^2 - \frac{1}{f q F} \frac{\partial}{\partial s} |\nabla \psi|^2 - \frac{1}{f q} \frac{dF}{ds}.
\]

(A12e)

\[
A(1',4') = \frac{1}{f q F} (F^2 + |\nabla \psi|^2).
\]

(A12f)

Somewhat simpler matrix elements are obtained for the right-hand sides of (45) and (49):

\[
A(2,3) = -\frac{1}{f q F} (m^2 F^2 + n^2 q^2 |\nabla \psi|^2),
\]

(A13a)

\[
A(2,4) = -\frac{i}{F q} (m + n q)(m - \bar{m} + n q) \nabla \psi \cdot \nabla \vartheta \\
+ \left[(m + 2 n q) \frac{1}{f q F} \frac{dq}{ds} - \frac{1}{f q^2 F} (m + n q) \frac{dF}{ds} \right] |\nabla \psi|^2 \\
+ \frac{m + n q}{f q F} \frac{\partial}{\partial s} |\nabla \psi|^2,
\]

(A13b)

\[
A(2,4') = \frac{1}{f q F} (m F^2 - n q |\nabla \psi|^2),
\]

(A13c)

\[
A(3,2) = 1,
\]

(A13d)

\[
A(4,1) = -F \frac{|\nabla \psi|^2}{f}.
\]

(A13e)
\[A(1,1) = \rho_0 \frac{R^2}{F q} \left[-i \frac{m}{q f} \frac{p'_{0i}}{n_0} g_{11} + g_{12} \frac{\partial}{\partial s} \left(\frac{p'_{0i}}{f q n_0} \right) \right], \]
(A14a)

\[A(1,1') = \rho_0 \frac{R^2}{q^2} \frac{p'_{0i}}{n_0} g_{22}, \]
(A14b)

\[A(2,1) = \frac{f q R^2}{F} \left[\frac{m}{q f} \frac{p'_{0i}}{n_0} + ig_{22} \frac{\partial}{\partial s} \left(\frac{p'_{0i}}{f q n_0} \right) \right], \]
(A14c)

\[A(2,1') = i \rho_0 \frac{R^2}{F} \frac{p'_{0i}}{n_0} g_{22}. \]
(A14d)

We substitute (A9) in (A14) and obtain

\[A(1,1) = \rho_0 \frac{R^2}{F} \left[-i \frac{m}{q^2 n_0} \left(\frac{1}{|\nabla \phi|^2} + \frac{q^2 R^2}{F^2} \frac{1}{|\nabla \phi|^2} \right) - \frac{q R^2}{F^2} \frac{\partial}{\partial s} \left(\frac{p'_{0i}}{f q n_0} \right) \right] \left(\nabla \phi \cdot \nabla \theta \right), \]
(A15a)

\[A(1,1') = - \rho_0 \frac{R^4}{F^3} \frac{p'_{0i}}{n_0} \left(\nabla \phi \cdot \nabla \theta \right), \]
(A15b)

\[A(2,1) = \frac{\rho_0 q^2 R^4}{F^3} \left[-m \frac{p'_{0i}}{n_0} \left(\nabla \phi \cdot \nabla \theta \right) + iq |\nabla \phi|^2 \frac{\partial}{\partial s} \left(\frac{p'_{0i}}{f q n_0} \right) \right], \]
(A15c)

\[A(2,1') = i \rho_0 \frac{R^2 g^2}{F^3} |\nabla \phi|^2. \]
(A15d)

