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Abstract. It is well known that stabilization of the resistive wall mode (RWM) may

allow fusion power to be significantly increased for a given magnetic field in advanced

tokamak operation. The principle of stabilization of the RWM by rotation has been

established both experimentally and theoretically. Recent experimental results have

indicated stabilization of the RWM has been achieved with very small levels of rotation

using balanced neutral beam injection. The framework of Connor et al. (Connor et al.

1988 Phys. Fluids 31 577) is used to develop two ideal plasma analytic toroidal models

where stepped pressure profiles and careful ordering of terms are used to simplify the

analysis. The first model has one resonant layer in the plasma and two resistive walls

and the second has two resonant layers and one resistive wall. The RWM can be

stabilized with slow rotation (∼ 0.5%ΩA, where ΩA is the Alfvénic rotation frequency)

of a secondary resistive wall. A secordary rotating resistive wall can only stabilize

the plasma if a perfectly conducting wall at that location would stabilize the plasma.

Differential rotation in the plasma is investigated by rotating two resonant layers in

the plasma at different rates. It is found in this model that differential rotation of the

outer resonant surface can stabilize the RWM, with no rotation required at the inner

surface.
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1. Introduction

1.1. Background

A perfectly conducting tokamak wall is known to produce a stabilizing effect on

the plasma. In fact, a perfect wall could increase the permissible stable β (where

β = 2µ0p0/B
2
0 is the ratio of plasma pressure, p0, to magnetic pressure, and B0 is

the equilibrium magnetic field) by around 40%, see Reimerdes et al. [1] or Hender et

al. [2], with the consequence that fusion power could be approximately doubled. In

reality, the tokamak wall has a finite conductivity and so unstable modes can grow at

a rate comparable to τ−1
w , where τw is the vertical field diffusion time through the wall.

These modes are called resistive wall modes (RWMs).

It is well known that experimental results have demonstrated that the RWM can be

stabilized by rotation, see for example Reimerdes et al. [1]. This can be explained by one

of the many RWM stabilization mechanisms that have been studied, for example: [3–8].

The levels of rotation match reasonably well between theory and experiment.

However, there is experimental evidence that the RWM has been stabilized even

with very slow rotation, Reimerdes et al. [9, 10]. This might be explained by plasma

resonances with ions, for example precessional drift resonance [11]. It is known that

Coriolis and centrifugal forces can also act to reduce the growth rate of resistive wall

modes, see Chu et al. [12] or Gimblett et al. [13]. These effects will not be considered

further here. However, it is clear experimentally that the toroidal plasma rotation has a

non-constant radial profile, [10] and this may provide another explanation as suggested

in [9, 10, 14].

Differential rotation stabilization will be explored initially using the idea of a

secondary rotating wall first developed for the reversed field pinch [15] and then analysed

in a cylindrical tokamak geometry in [16]. The latter paper showed that the RWM could

be stabilized in certain circumstances with no plasma rotation. The insight gained

from the secondary rotating wall outside the plasma motivates investigation of a second

differentially rotating resonant layer inside the plasma.

1.2. Overview

A toroidal analytic magnetohydrodynamic (MHD) stability model of a tokamak with

circular cross section and large aspect ratio will be used here, as developed in Ham et

al. [17]. Adjacent poloidal Fourier harmonics exp(imθ), where θ is poloidal angle and m

is poloidal mode number, are coupled togther by toroidicity, so the m harmonic is just

coupled to the m−1 and m+1 harmonics. An analytical treatment is made possible by

the use of stepped equilibrium pressure and current profiles. In particular, the pressure

steps have been located near to the rational surfaces which produces certain ‘magnifying

factors’ (to be explained in more detail below) that are used to rank terms in deriving

the model equations.

Background for the cylindrical and toroidal models will be given in section 2. Jump
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conditions are required to connect solutions at the pressure steps and these will be given

in section 3. The two RWM stabilization models will then be investigated. The first

model, in section 4, has one resonance in the plasma and two resistive walls that can

rotate at different rates outside. The second model, in section 5, has two resonant

layers in the plasma which may rotate at different rates and one resistive wall outside.

Conclusions and discussion will be given in section 6.

2. Background

2.1. Cylindrical model

In the cylindrical model, perturbed marginal force balance equation is used to model the

stability of the plasma. This results in an equation for the perturbed poloidal magnetic

flux ψ [5]
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ψ = 0, (1)

where F0 = (Bθ0/r)(m − nq), ′ denotes the radial derivative and J0 and p0 are the

equilibrium current and pressure respectively. B0 and Bθ0 are the unperturbed toroidal

and poloidal magnetic induction respectively, q(r) = (rB0)/(R0Bθ0) is the safety factor

profile, where R0 is the major radius, and µ0 is the permeability of free space. Equation

(1) is singular at rational surfaces where m = nq(rs) (n,m are the toroidal and poloidal

mode numbers). This means that resistive and other physical effects must be included

in a layer surrounding the rational surface.

Equation (1) is solved in the regions outside of the resonant surfaces and the

solutions are forced to be continuous across these resonant surfaces. There will be

a jump in the derivative of the solution across the resonant surface which defines

∆′

s ≡
[

rψ′(r)

ψ(r)

]

rs

, (2)

where rs is the radial location of the resonant surface.

The resistive wall cannot be represented using (1) either and an ‘inner’ solution must

be calulated there using the pre-Maxwell equations, and a thin wall approximation [18],

∆′

w ≡
[

rψ′(r)

ψ(r)

]

rw

= γτw, (3)

where γ is the growth rate of the mode, τw is the vertical field diffusion time of the wall

and

[f ]r = lim
ǫ→0

(f(r + ǫ) − f(r − ǫ)) . (4)

2.2. Toroidal model

A model which includes toroidal effects in the calculation can be formulated using

the model developed by Connor et al. [19]. This model is derived from the linearized
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marginal ideal MHD equations

∇p̃ = j ×B0 + J0 × b, (5)

µ0j = ∇× b,

p̃ = − ξ.∇p0,

b = ∇× (ξ ×B0),

which represent perturbed marginal force balance, Ampére’s law, the equation of state

for the perturbed pressure, p̃, and the induction equation respectively. The equilibrium

current, J0, magnetic field, B0, and plasma pressure, p0, satisfy J0 × B0 = ∇p0, j

and b are the perturbed current and magnetic field respectively and ξ is the plasma

displacement.

It is possible to Fourier decompose equations (5) into poloidal harmonics, which

yields an infinite set of coupled equations. The coupling can be reduced to immediately

adjacent harmonics if a large aspect ratio and circular plasma cross-section are assumed.

This system of equations was used to develop an analytic tokamak [17].

An analytically tractable model will be produced by using a stepped pressure profile.

The equations are further simplified by producing a ‘magnifying’ factor which allows

certain terms to be neglected. This factor appears when the pressure step location, rp,

and the rational surface are placed close together, so the factor κ ≡ m− nq(rp) is small

in the pressure step region. This factor appears in the denominator and so acts as a

magnifier in the equations from [19]. There is therefore no pressure-free coupling in this

model and coupling only occurs at rp. More details of this calculation are given in [17].

2.3. Layer physics including toroidal effects

Equation (1) in the cylindrical case or equations (5) in the toroidal case are used outside

the resonant layer. The solutions to this equation couple the wall mode to the layer

by marginal force balance. Inside the layer other physical effects are required such as

resistivity. The ideal (or inertial) layer response will be used here [20]

∆s(γ) = − π

γτA
, (6)

where τA is the Alfvén time at the layer, based on B0. The effects of layer physics on

the RWM has been investigated in [21]. The final RWM dispersion relation is formed

by matching the solution inside and outside the layer

∆s(γ) = ∆′

s. (7)

It was noted in [17] that toroidal effects produce an enhancement to the plasma

inertia in the resonant layer, ρeff. The enhancement depends on which collisionality

regime the plasma is in. These effects have been investigated by Shaing [22] using the

Fitzpatrick-Aydemir model [23]. The effect was included in Ham et al. [17] and it was

found that it could reduce the critical rotation required for stabilization of the RWM

quite significantly.
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3. Pressure step jump conditions

The analytic model used here is derived using a stepped pressure profile. The coupling

between the harmonics of the perturbed poloidal magnetic flux only happens at these

pressure step locations. The details of the calculation of the jump conditions for each

of the perturbed magnetic flux harmonics was given in [17]. The jump conditions are

[rψ′

m] = mβ̂

(

(1 + s)(ψm+1 − ψm−1) +
rψ′

m+1

(m+ 1)
+

rψ′

m−1

(m− 1)

)

, (8)

[ψm] = 0, (9)
[

rψ′

m+1

]

=
(m+ 1)2

m
(1 + s)β̂ψm, (10)

[ψm+1] = − (m+ 1)

m
β̂ψm, (11)

[

rψ′

m−1

]

= − (m− 1)2

m
(1 + s)β̂ψm, (12)

[ψm−1] = − (m− 1)

m
β̂ψm, (13)

where s = rq′(rp)/q(rp) is the magnetic shear and ψl is the perturbed poloidal magnetic

flux for the lth harmonic. Care needs to be taken over the definition of pressure in these

equations as pointed out in [17]. It is this local pressure that appears in the coupling

parameter when deriving the pressure step jump conditions. The coupling parameter is

β̂ =
R0

rp

2pLµ0q
2
0

B2
0

m

m− nq(rp)
≈ βL

ǫpκ
(14)

where ǫp = rp/R0 is the inverse aspect ratio, κ ≡ m− nq(rp), βL = 2pLµ0/B
2
0 and pL is

the jump in pressure across the pressure step. A high β ordering will be used such that

βL/ǫp ∼ O(
√
κ). It was shown in [17] that this higher pressure ordering will produce a

pressure driven kink mode.

There are jumps in the m− 1, (13), and m+ 1, (11), harmonics themselves at the

pressure step which are due to equilibrium Pfirsch-Schluter current sheets [24]. It should

also be noted that (8) is unambiguous because the RHS can be shown to be continuous

across r = rp even though all of the constituent parts are discontinuous.

Some effects of rotation can be investigated by giving the plasma a bulk rotation

Ωp with respect to the wall. If the ideal layer response is assumed then the following

dispersion relation is solved

∆′

s = ∆m(γ) = − π

(γ − iΩp)τA
, (15)

and τw/τA = 14000 will be used as is typical in DIII-D experiments [1]. Alternatively, we

may use Galilean invariance to specify a rotation at the wall so that ∆′

w = (γ− iΩw)τw.

However, this does not include Coriolis or centrifugal effects which appear as a result of

plasma rotation.
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Figure 1. The current and pressure profile for the pressure driven kink mode with

two resistive walls located at rw1 and rw2.

4. Two walls one resonance

The idea of stabilizing the RWM in a fusion plasma using a secondary rotating resistive

wall, first suggested in [15], arose in relation to reverse field pinches and has been applied

to the line-tied cylindrical case by Hegna [25]. However, it has also been investigated

in the tokamak configuration. Gimblett and Hastie [16] showed that in the case of a

‘cylindrical’ tokamak calculation, a suitably positioned secondary rotating wall outside

the tokamak can stabilize the RWM at relatively low rotation rates even with a static

plasma and first wall. A toroidal version of this calculation using the analytic toroidal

model developed by Ham et al. [17] will be carried out here.

The plasma equilbrium that will be used for the two wall case is shown in figure 1.

A specific set of parameters has been chosen to model a typical ideal pressure driven

external kink mode with a resistive wall. The current profile is uniform either side of

the two steps at rj = 0.5 and a = 1. The ratio of the current density for rj < r < a

to the current density for r < rj is ζ = 0.4. The resistive wall is located at rw = 1.15.

The pressure step is at rp = 0.9 and the rational surface just outside at rp + ǫ = 0.905.

A ‘cartoon’ of the equilibrium is shown in figure 1. The poloidal mode number of the

central harmonic is m = 2. The safety factor profile is flat for r ≤ rj with q(0) = 1.166

and monotonically increasing for r > rj with q(a) = 2.121. The full toroidal problem

is solved by matching the solutions in each region together using the jump conditions

at the pressure and current steps and at the wall. The no wall stability limit of this

equilibrium is β̂ = 2.4574 and the perfect wall limit is β̂ = 7.9254. It has been shown

in Ham et al. [17] that with one wall this configuration produces a pressure driven kink

mode.
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Figure 2. The critical rotation of the second wall required to stabilize the RWM

against increasing pressure. The first wall is located at rw1 = 1.15 and the second wall

is at rw2 = 1.20. The first wall and plasma are assumed static.

Figure 2 shows how the critical rotation for stabilization of the RWM changes with

the pressure instability drive parameter Cβ introduced by Reimerdes et al. [1]

Cβ =
β − βNo wall

βPerfect wall − βNo wall

. (16)

Here βNo wall is the no wall β limit and βPerfect wall is the perfect wall β limit. Cβ is defined

with reference to a perfect wall located at the first wall, rw1. Relatively slow rotation

of the secondary wall (∼ 0.5%ΩA) is required for stabilization when the plasma and

the first wall are assumed to be static. No inertial enhancement in the layer has been

used in this calculation. Figure 2 shows a very sharp increase in critical rotation as

Cβ → 0.65 because the secondary wall β limit corresponds to a first wall Cβ ≈ 0.65 and

so second wall stabilization is impossible beyond this pressure limit.

The location of the second wall with respect to the first wall has been investigated

and figure 3, which plots critical rotation for stabilization against the position of the

second wall, shows that there is an optimum position for the second wall. If the second

wall is withdrawn from the first wall the critcal rotation first falls to a minimum at

rw2 ≈ 1.05rw1 and then increases until the second wall is beyond the point where a

perfect wall would stabilize the plasma. The second wall has no stabilizing effect beyond

that point. A similar result is seen for the cylindrical case in Gimblett and Hastie [16].

A secondary rotating tokamak wall could in principle be realised by using a

flowing lithium blanket [15]. The Wisconsin rotating wall machine [26, 27] is a line-
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Figure 3. The critical rotation of the second wall required to stabilize the RWM for

different second wall positions. First wall position is fixed at rw1 = 1.15.

tied cylindrical pinch experiment designed to investigate a secondary rotating wall or

flowing metal blanket. A secondary rotating wall could also be ‘faked’ using an array

of external coils, as investigated by Jensen and Fitzpatrick [28].

5. Two resonance pressure driven kink mode

In this section an equilibrium with two resonant surfaces and one resistive wall will be

investigated. It is conjectured that a second resonance might act in a similar way to a

second wall and facilitate RWM stabilization.

The equilibrium considered here is shown in figure 4. There are two pressure steps

and two resonances at q = m and q = m + 1, m = 2 will be used here. This means

that four poloidal harmonics will be required. The details of the equilibrium used will

now be given. The first current step is at rj = 0.5, the edge of the plasma a = 1 and

the ratio of the current density at the core to the edge is ζ = 0.4. The inner pressure

step is located at rp1 = 0.55 with the rational surface just outside it at rs1 = 0.555.

The outer pressure step is located at rp2 = 0.8805 with rational surface just outside at

rs2 = 0.8855. The ratio of the pressure jumps at the pressure steps is kept constant at

β1/β2 = 1.5. The safety factor on axis is q0 = 1.7740 and the safety factor at the plasma

edge is qa = 3.2254.

Figure 5 shows the four poloidal harmonics for the case with two resonant layers.

Note that the m − 1 harmonic is small in comparison to the others and it has little
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Figure 4. Current and pressure profile for the pressure driven kink mode with two

internal resonant layers at rs1 and rs2 and one resistive wall at rw.
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Figure 5. The four harmonics of the eigenfunction with two resonant surfaces.

Cβ = 0.5.
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Figure 6. The rotation required to stabilize the RWM with no differential rotation

against increasing pressure (Ω1 = Ω2). The solid line has no enhanced inertia, the

dash-dot line has τ eff

A = 3 and the dotted line has τ eff

A = 6. The ratio of pressure steps

was held at β1/β2 = 1.5.

activity outside the first pressure step. The m and m + 1 harmonics are of similar

amplitude. The m + 2 harmonic is large compared to the other harmonics and has

significant amplitude outside the wall location.

The rotation required to stabilize the RWM with no differential rotation is shown

in figure 6. This plot has a similar shape to the one resonance case reported in Ham

et al. [17]. The critical rotation has been calculated for the no enhancement case and

two different values of enhanced inertia, τ eff

A = 3τA and τ eff

A = 6τA. The enhanced inertia

reduces the critical rotation significantly.

The RWM can be stabilized with rotation only at the rs2 surface, with the wall and

rs1 static. The magnitude of the rotation required at the m+ 1 surface is similar to the

rotation required for the no differential rotation case, see figure 7. Again the required

rotation is reduced if enhanced inertia is included in the layer. In this case it is not

possible to stabilize the RWM if rs1 rotates and rs2 and the wall are static.

The effect of changing the rotation rate of the first resonance can also be

investigated. Figure 8 shows that the minimum critical rotation required at rs2 occurs

at small values of Ω1 ∼ 0.25%ΩA. It should be noted that this is a relatively small effect

only reducing the critical rotation from ∼ 5.3%ΩA to ∼ 4.6%ΩA. The m + 2 harmonic

has the dominant penetration into the wall and it is the rotation of the m+1 resonance

that most strongly acts to stabilize this harmonic.
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Figure 7. The rotation required to stabilize the RWM with differential rotation with

increasing pressure (Ω1 = 0, Ω2 6= 0).The solid line has no enhanced inertia, the dash-

dot line has τ eff

A = 3 and the dotted line has τ eff

A = 6. The ratio of pressure steps was

held at β1/β2 = 1.5.
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Figure 8. The rotation at the second resonance Ω2 required for stabilization for

different rates of rotation of the first resonance Ω1, with Cβ = 0.5 and β1/β2 = 1.5.

The wall is held static.
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Figure 9. The effect of the relative pressure β1/β2 on the rotation required for

stabilization with Cβ = 0.5. The solid line assumes that there is no differential rotation

(Ω1 = Ω2). The dashed line assumes Ω1 = 0 and only the second resonance is rotating.

The sensitivity of the pressure at each step β1 and β2 is shown in figure 9. For

no differential rotation the critical rotation increases approximately linearly with β1/β2.

However, with differential rotation the critical rotation increases with β1/β2 at first and

then reduces beyond β1/β2 ∼ 1.5.

6. Discussion and Conclusions

Two models have been developed to investigate the effect of differential rotation on

the stabilization of the toroidal RWM. The first model had one resonant layer in the

plasma and two resistive walls outside. It was found that rotation of the second wall

alone (∼ 0.5%ΩA), with the plasma and first wall static, was sufficient to stabilize the

RWM. The second wall has no effect outside the position where an ideal second wall

would not stabilize the plasma. For maximum effect the second wall should be placed

at rw2 ≈ 1.05rw1. It should be noted that a secondary rotating wall does not have to be

literally that, it could be realised in principle using a flowing lithium blanket [15] or a

suitable array of active coils [28].

A toroidal model for the resistive wall mode with two resonant surfaces in the

plasma and one resistive wall outside has also been developed. The two resonant

surfaces were rotated at different rates to investigate the suggestions made in [9, 14]

that differential rotation could act to stabilize the RWM. It was found that the RWM
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could be stabilized with rotation only of the rs2 surface, with the wall and core plasma

static. There may be other effects if further resonant layers are included in the model.

If the main harmonic in this model is taken to be m = 2 and so m+1 = 3, then the

result in this paper may, in part, explain the results of experiments on RWM stability

with balanced neutral beams. In these experiments the RWM is stable with little or no

rotation at the q = 2 surface [9] when the mode would be expected to be unstable if

differential rotation or kinetic effects were not considered.
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