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Longitudinal magnetic fluctuations in Langevin spin dynamics
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We develop a generalized Langevin spin dynamics (GLSD) algorithm where both the longitudinal and
transverse (rotational) degrees of freedom of atomic magnetic moments are treated as dynamic variables. This
removes the fundamental limitation associated with the use of stochastic Landau-Lifshitz (sLL) equations,
in which the magnitude of magnetic moments is assumed constant. A generalized Langevin spin equation
of motion is shown to be equivalent to the sLL equation if the dynamics of an atomic moment vector is
constrained to the surface of a sphere. A fluctuation-dissipation relation for GLSD and an expression for the
dynamic spin temperature are derived using the Fokker-Planck equation. Numerical simulations, performed using
ferromagnetic iron as an example, illustrate the fundamental difference between the two- and three-dimensional
dynamic evolution of interacting moments, where the three-dimensional GLSD includes the treatment of both
transverse and longitudinal magnetic excitations.
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I. INTRODUCTION

Langevin spin dynamics (SD) treats thermal fluctuations
of a single spin, or thermal excitations of an interacting spin
ensemble, by introducing stochastic and dissipation terms in
the spin equations of motion.1 These two terms, steering a spin
system towards thermal equilibrium, are related through the
fluctuation-dissipation theorem.2–4 Langevin SD is a versatile
technique for simulating relaxation and equilibration processes
in magnetic materials at finite temperatures.5–17 For a variety
of applications, Langevin SD is equivalent to the dynamics
described by stochastic Landau-Lifshitz (sLL) or stochastic
Landau-Lifshitz-Gilbert (sLLG) equations.1,5–17

The sLL equation has the form:

dS
dt

= 1

h̄
[S × (H + h) − γsS × (S × H)], (1)

where S = −M/gμB is the spin vector of an atom, M is its
magnetic moment, H is the effective field acting on an atomic
spin, h is a fluctuating field, and γs is a damping parameter.
Equation (1) conserves the magnitude of the spin vector S. The
same argument applies to the sLLG equation.

According to Eq. (1), a spin vector S(t) evolves dynami-
cally, at each moment of time remaining on a two-dimensional
surface of a sphere. The magnitude of the spin vector does not
fluctuate, despite the fact that there is a fluctuating term in the
right-hand side of Eq. (1). The lack of longitudinal fluctuations
(LFs) is a fundamental drawback of Langevin SD. LFs of
magnetic moments are closely linked to the itinerant nature
of electron magnetism, where electron-electron exchange
interaction is responsible for the formation of local atomic
magnetic moments. LFs have a significant effect on the
high-temperature properties of a magnetic alloy such as its free
energy18,19 and specific heat.20,21 LFs of magnetic moments
also influence finite-temperature properties and dynamics of
defects and dislocations. For example, density functional
calculations show substantial variations of magnitudes of
magnetic moments in the strongly distorted core regions
of defect structures, at surfaces and interfaces.22–27 Finite-
temperature properties of defects play an important part in

determining high-temperature deformation modes of structural
materials, such as iron alloys and steels.18,26,28–30

There are several computational methods that include the
treatment of longitudinal and transverse magnetic degrees
of freedom at finite temperatures. The majority of them are
based on equilibrium finite-temperature ab initio calculations,
for example dynamic mean field theory,31 coherent potential
approximation,32 spin-fluctuation theory,33,34 and quantum
Monte Carlo simulations.19 On a semiclassical level, the ab
initio calculated electronic structure and interactions between
magnetic moments are used as input for Monte Carlo20,35 or
spin dynamics14–17 simulations.

Many of the above methods do not attempt to follow
the real-time dynamics of the magnetic system. A notable
exception is an approach that links classical spin dynamics
with density functional theory.14–17 In this approach, the effec-
tive intersite interactions between magnetic moments and the
magnitudes of moments are calculated using density functional
theory. Subsequently, evolution of the transverse (rotational)
degrees of freedom of the spin vectors is followed using a
system of coupled sLL equations.14–17 Such an approach is
still fairly computationally demanding, and simulations can
only be performed for relatively small systems involving up to
a thousand magnetic moments.

In this paper, we develop a method that makes it possible
to include LFs in a semi-classical dynamics of evolution of
interacting magnetic moments. The method is based on the
generalization of Langevin SD to a fully three-dimensional
stochastic dynamics of moments. In the generalized Langevin
SD, both the longitudinal and rotational degrees of freedom of
atomic spin vectors are treated on equal footing. This removes a
fundamental limitation associated with the lack of longitudinal
fluctuations in the sLL(G) equations, but retains the capacity
of the method to simulate a very large system of interacting
spins.

The paper is organized as follows. We first revisit the
derivation of spin dynamics equations starting from a quantum-
mechanical Hamiltonian and show that the method corre-
sponds to the mean-field treatment of the effective field
acting on the spins. Then, we derive the generalized Langevin
spin dynamics (GLSD) equations of motion and prove that
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these equations are equivalent to the sLL equations if the
motion of a spin vector is constrained to a two-dimensional
surface of a sphere. A Fokker-Planck equation is then used
for establishing a fluctuation-dissipation relation. Numerical
simulations, carried out using ferromagnetic iron as a model
example, illustrate and compare predictions derived from two-
and three-dimensional dynamics of magnetic moments.

II. THEORY

A. Mean-field approximation

For a closed system described by a spin Hamiltonian Ĥ, cf.
Refs. 14 and 36, an equation of motion for a spin operator can
be derived using the Poisson brackets commutator, viz.,

dŜ
dt

= i

h̄
[Ĥ,Ŝ]. (2)

On the other hand, classical equations of motion for a spin
vector are usually given in the form1,5,6,10–12,17

dS
dt

= 1

h̄
(S × H), (3)

where

H = −∂H
∂S

(4)

is the effective vector field acting on spin S. Equation (3)
conserves the total energy for a closed system, and hence
satisfies a fundamental condition of Hamiltonian dynamics.
Still, the range of validity of this equation remains not very
well defined. To clarify the meaning of Eq. (4), we undertake
a brief derivation showing that Eqs. (2) and (3) are closely
related, and that Eq. (3) in fact represents the mean-field limit
of Eq. (2), cf. Ref. 37.

Assuming an arbitrary quantum-mechanical Hamiltonian,
expressed in terms of spin operators, we write it in the form of
a Taylor series

Ĥ =
∞∑

n=0

anŜn, (5)

where Ŝ = (Ŝx,Ŝy,Ŝz) is a spin operator and an is a Taylor
expansion coefficient. A similar representation can be con-
structed for a system described by an arbitrary set of spin
operators in which an is a multidimensional tensor with indexes
referring to individual spins.

We now write each term in Eq. (5) in the form

Ŝn = (〈Ŝ〉 + Ŝ − 〈Ŝ〉)n, (6)

where 〈Ŝ〉 is the expectation value of Ŝ. Defining

δŜ = Ŝ − 〈Ŝ〉, (7)

we transform Eq. (6) as

Ŝn = 〈Ŝ〉n + n〈Ŝ〉n−1δŜ + · · · . (8)

Substituting this into the Taylor series for the spin Hamiltonian,
Eq. (5), we arrive at

Ĥ =
∞∑

n=0

an〈Ŝ〉n +
∞∑

n=1

ann〈Ŝ〉n−1δŜ + · · · . (9)

Since the expectation value of operator 〈Ŝ〉 is the spin vector
S itself, we see that the first term in Eq. (9) represents the
Hamiltonian function, H, which is defined as the Hamiltonian,
Eq. (5), in which all the spin operators are replaced by their
expectation values. The Hamiltonian function commutes with
any spin operator and hence gives no contribution to the
commutator in the right-hand side of the Poisson bracket,
Eq. (2). The first nonvanishing contribution to equations of
motion comes from the second sum in the right-hand side of
Eq. (9), which has the form

∞∑
n=1

annSn−1δŜ = ∂H
∂S

· δŜ = −H · (Ŝ − 〈Ŝ〉). (10)

Here, vector H = −∂H/∂S also commutes with Ŝ. Using the
commutation relations for the spin operators, we arrive at the
equation of motion for the spin operators

dŜ
dt

= 1

h̄

[
Ŝ ×

(
−∂H

∂S

)]
, (11)

which, being linear in spin operators, has the same form as
the classical equation (3) for the spin vector. Our derivation is
valid for any spin Hamiltonian Ĥ, and hence the spin equations
of motion investigated below are valid for any interacting spin
system, where the effective field acting on each spin is treated
in the mean-field approximation.

B. Langevin equations of motion

In the semiclassical limit, taking the expectation values of
both sides in Eq. (11), we write the equation of motion for a
spin vector Si(t) as

dSi

dt
= 1

h̄
(Si × Hi), (12)

where Hi = −∂H/∂Si , and Si as well as Hi are three-
dimensional vectors. As we noted in the Introduction, the cor-
responding Langevin spin equations of motion are commonly
taken in the form of sLL equations, namely,

dSi

dt
= 1

h̄
[Si × (Hi + hi) − γsSi × (Si × Hi)]. (13)

The fluctuating field hi entering this equation is
related to the damping parameter γs through the
fluctuating-dissipation relation,1–4,7,9 namely, 〈hi(t)〉 = 0,
〈hiα(t)hjβ(t ′)〉 = μsδij δαβδ(t − t ′) and μs = 2γsh̄kBT . Here,
subscripts α and β denote the Cartesian components of a
vector. We note that colored, i.e., non-δ-correlated, noise
has also been considered within the framework of the sLL
equation.38,39

Comparing the sLL equation with the Langevin equation of
motion for atoms,2–4 we note that they look fairly dissimilar.
The conventional forms of the Langevin equations of motion
for interacting atoms are

dpi

dt
= − ∂U

∂Ri

− γl

pi

m
+ fi , (14)

dRi

dt
= pi

m
, (15)

where U = U ({Ri}) is the potential energy of interaction
between the atoms, Ri is the position of atom i, pi is its momen-
tum, fi is a δ-correlated fluctuating force, and γl is a damping
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parameter. The Hamiltonian function for interacting atoms is

H =
∑

i

p2
i

2m
+ U ({Ri}). (16)

To establish a connection between the Langevin treatment of
motion of atoms and Langevin equations for the spins, we
note that the dissipation term in Eq. (14) can be expressed in
terms of the partial derivative of the Hamiltonian function with
respect to the momentum of an atom as

−γl

pi

m
→ −γl

∂H
∂pi

. (17)

Dissipative terms proportional to the partial derivatives of
the Hamiltonian function with respect to particle coordinates
∂H/∂Ri can also be included in Eq. (15), see Refs. 40 and 41.

Applying the same principle, we write the Langevin spin
equations of motion as

dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γ ′

s

∂H
∂Si

+ ξ i (18)

= 1

h̄
(Si × Hi) + γ ′

s Hi + ξ i (19)

where ξ i is a δ-correlated fluctuating “force” acting on spin i.
In what follows, we assume that this force satisfies the usual
conditions 〈ξ i(t)〉 = 0 and 〈ξiα(t)ξjβ(t ′)〉 = μ′

sδij δαβδ(t − t ′).
Equations (18) and (19) form the fundamental set of equations
for GLSD. The key difference between Eq. (18) and the sLL
equation (13) is that Eq. (18) no longer imposes any constraint
on the magnitude of atomic spin, and in this way, it introduces
longitudinal fluctuations of the spin vector.

It is natural to pose a question about the relationship
between Eqs. (13) and (18). It is a simple matter to prove
that Eq. (13) is nothing but a projection of Eq. (18) onto the
surface of a sphere. To show this, we subtract longitudinal
components from the vector terms describing dissipation
and fluctuations or, in other words, apply the following
transformation to Eq. (19):

Hi → Hi − ei(ei · Hi), (20)

ξ i → ξ i − ei(ei · ξ i), (21)

where ei = Si/Si is a unit vector in the longitudinal direction
of an atomic spin. Using vector algebra, we now transform
the dissipation term as

Hi − ei(ei · Hi) = −ei × (ei × Hi). (22)

The vector structure of the right-hand side of this equation
is identical to that of the last term in the right-hand side of
Eq. (13), hence proving the equivalence of Eqs. (13) and (19).

To show the equivalence between the fluctuation term
entering Eq. (13) and the projection (21) of random force
ξ (t) into a sphere, we note that achieving this amounts to
demonstrating that both random processes have the same
statistical properties. To prove this, let us introduce random
vector processes

ui = ξ i − ei(ei · ξ i), (23)

vi = ei × ξ i , (24)

where Eq. (23) is just a projection of ξ (t) onto the surface of
a sphere, and Eq. (24) has the same vector structure as the

random field term in Eq. (13). Evaluating statistical average
values for both quantities, we find that

〈ui(t)〉 = 〈vi(t)〉 = 0, (25)

〈uiα(t)ujβ(t ′)〉 = δij (δαβ − 〈eiαeiβ〉)δ(t − t ′)
= 〈viα(t)vjβ(t ′)〉. (26)

Since the statistical properties of random vector process ui(t)
are the same as the statistical properties of random vector
process vi(t), in the Langevin spin equations we can replace
ξ i − ei(ei · ξ i) with ei × ξ i , and vice versa.

Therefore Eq. (18) or (19) can be transformed into Eq. (13)
exactly if we constrain the dynamics of the spin vector to the
surface of a sphere of radius Si . Equations, relating the random
force term entering Eqs. (18) and (19), the random field term
in Eq. (13), and damping parameters γ ′

s and γs , have the form

ξ i = Sihi/h̄, (27)

γ ′
s = S2

i γs

/
h̄. (28)

It can be readily verified that if μs = 2γsh̄kBT , then the
fluctuation-dissipation relation for Eq. (18) reads μ′

s =
2γ ′

s kBT . This relation can also be proven using the Fokker-
Planck equation, as discussed below.

Concluding this section, we note that the invariant, with
respect to the choice of a system of coordinates, structure of
Eq. (18) offers a new insight into the nature of relaxation
of transverse and longitudinal magnetic degrees of freedom.
The fact that by adopting a simple functional form for the
fluctuation and dissipation terms in Eqs. (18) and (19), we
arrive at a formalism equivalent to the sLL equation (13)
shows that it is the same value of damping parameter γ ′

s that
describes relaxation of all the degrees of freedom of magnetic
moments. The fact that it is the same damping parameter γ ′

s

that describes relaxation of both transverse and longitudinal
degrees of freedom is in effect a corollary of the covariant
structure of Eqs. (18) and (19).

C. The Fokker-Planck equation

To derive a relation between the fluctuation and dissipation
terms in Eqs. (18) and (19), we map Eq. (18) onto the Fokker-
Planck equation42,43:

∂W

∂t
= −

∑
i,α

∂

∂Siα

(AiαW ) + 1

2

∑
i,j,α,β

∂2

∂Siα∂Sjβ

(BiαjβW ),

(29)

where Aiα = lim�t→0
1

�t
〈Siα〉 is the drift coefficient and

Biαjβ = lim�t→0
1

�t
〈SiαSjβ〉 is the diffusion coefficient.

The drift and diffusion coefficients for the coordinates and
momenta have the form42,43

Ai = −1

h̄

(
Si × ∂H

∂Si

)
− γ ′

s

∂H
∂Si

, (30)

Biαjβ = μ′
sδij δαβ. (31)

At equilibrium, where ∂W/∂t = 0, the energy distribution
approaches the Gibbs distribution W = W0 exp(−H/kBT ).
Here, W0 is a normalization constant. Substituting this
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distribution into the Fokker-Planck equation, we find

∂W

∂t
=

(
γ ′

s − μ′
s

2kBT

)

×
{∑

i,α

[
∂2H
∂S2

iα

− 1

kBT

(
∂H
∂Siα

)2
]}

W. (32)

The condition of thermal equilibrium is satisfied if

μ′
s = 2γ ′

s kBT , (33)

which is the desired fluctuation-dissipation relation. Similarly,
we find that

kBT =
∑
i,α

(
∂H
∂Siα

)2 / ∑
i,α

∂2H
∂S2

iα

. (34)

This equation relates temperature at equilibrium to the state
variables. In the numerical examples that we explore below, we
use this expression to evaluate the instantaneous temperature
of a system away from equilibrium. We also compare it with
the expression for spin temperature that we derived in Ref. 8
for a dynamic spin system evolving without LFs.

III. APPLICATION

A. Heisenberg-Landau Hamiltonian

In transition metals, such as iron, local magnetic moments
form due to intra-atomic exchange interaction between d

electrons.44–47 A simple model that describes both the intersite
interactions and the on-site LFs of moments is the Heisenberg-
Landau Hamiltonian:18,33,35,48,49

H = HR + HL, (35)

where

HR = −1

2

∑
i,j

Jij Si · Sj , (36)

HL =
∑

i

(
AS2

i + BS4
i + CS6

i

)
. (37)

The first term in Eq. (35) is the Heisenberg Hamiltonian that
describes collective magnetic excitations, which in materials
with relatively simple magnetic structure have the form of
spin waves. The second term is the Landau expansion, which
describes how energy varies as a function of the magnitude of
spin. This term is intimately linked to the local band structure
of the material. The time-reversal symmetry requirement
results in the Landau expansion containing only even powers
of Si . We may treat Eqs. (36) and (37) as representing the
rotational and longitudinal parts of the total Hamiltonian,
bearing in mind that they are not entirely independent of each
other.

The choice of the form of the Hamiltonian and its
parameters does not affect the validity of Eq. (18), but it
influences the results of simulations. In iron, d electrons are rel-
atively strongly localized. The magnitude of atomic magnetic
moments is almost independent of temperature.20,50,51 Effects
associated with interaction between the Heisenberg term and
the Landau term are expected to be small. The concept of local

band structure of iron remains valid even at fairly high tem-
perature, and the Heisenberg-Landau Hamiltonian provides a
good approximation for magnetic dynamics simulations. For
treating other materials, such as nickel, where longitudinal
fluctuations of moments are more pronounced, one could
add extra terms to the Heisenberg Hamiltonian,35,52,53 which
describe variations of the local band structure due to changes in
the atomic spin orientations. Higher-order terms33 or angular
dependence54 can also be included in the Landau expansion.

We evaluate exchange parameters Jij for bcc iron using a
method developed by van Schilfgaarde et al.55 in which the
linear muffin-tin orbital (LMTO) method is combined with a
Green’s function (GF) technique. Calculations are performed
using the generalized gradient approximation (GGA).56 The
lattice constant is set to be 2.8665 Å. We first assume that the
range of Jij includes the first and second nearest-neighbor
atoms. The calculated Jij for the first and second nearest
neighbours, i.e., J1 and J2, are then rescaled according to
the accumulated value of Jij for an arbitrary interatomic
distance and variable magnitude of magnetic moment M .
We set M = 2.2μB , and find J1 = 22.52 meV and J2 =
17.99 meV.

To find the coefficients of Landau expansion, we fit the
energy versus magnetic moment curve following a method
described in Refs. 46 and 47. First, we calculate the density of
states (DOS), D(E), for d electrons for a nonmagnetic state.
Assuming that the Stoner model describes the ferromagnetic
ground state, the Fermi levels for the spin up εF↑ and spin down
states εF↓ are calculated assuming a fixed value of magnetic
moment M and the number of d electrons N , that is,

M =
∫ εF↑

−∞
D(E)dE −

∫ εF↓

−∞
D(E)dE, (38)

N =
∫ εF↑

−∞
D(E)dE +

∫ εF↓

−∞
D(E)dE. (39)

The Stoner parameter can then be found as

I = (εF↑ − εF↓)/M. (40)

Once we have evaluated the Stoner parameter I , the energy of
the system as a function of M can be calculated as

Etot =
∫ εF↑

−∞
ED(E)dE +

∫ εF↓

−∞
ED(E)dE − I

4
M2, (41)

where the values of εF↑ and εF↓ for each M are calculated
according to Eqs. (38) and (39). Then, we plot the energy Etot

as a function of M and fit it to the Landau expansion, retaining
terms up to the sixth order in M , namely,

Etot(M) ≈ E0 + aM2 + bM4 + cM6. (42)

Comparing Eqs. (35) and (42), and assuming that in the
ground state all the spins are collinear, we find A = a(gμB)2 +
(
∑

m nmJm)/2, B = b(gμB)4, and C = c(gμB)6, where nm is
the number of spins in the mth nearest-neighbor shell.

Figure 1 shows the partial DOS for 3d electrons in iron.
They were also calculated using the LMTO-GF approach. The
PDOS for both magnetic and nonmagnetic states are shown.
One can see that the Stoner model for iron approximates
the variation of energy as a function of magnetic moment
fairly well. The shape of PDOS for up and down spins in a
ferromagnetic state resembles the PDOS for a nonmagnetic
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FIG. 1. (Color online) Partial densities of states (PDOS) for d

electrons in bcc iron evaluated for magnetic and nonmagnetic (NM)
states. The PDOS are calculated using the LMTO-GF method.55

The PDOS for a nonmagnetic state is similar to the PDOS for
spin up or down in the magnetic state. This confirms the rigid-band
approximation underlying the Stoner model.

state, shifted up or down, in agreement with the assumptions
underlying the Stoner model.

We extract the value of the Stoner parameter I from the
nonmagnetic PDOS, which gives I ≈ 1.0 eV. Energy as a
function of M is calculated according to Eq. (41) and plotted
in Fig. 2. We fit both the fourth- and sixth-order Landau
expansions to the data. Although the fourth-order expansion
already reproduces the shape of the Etot(M) curve fairly
well, the sixth-order expansion provides a better fit to the
curvature near the minimum energy point, which is important
for the treatment of thermal fluctuations of M . From the fit,
we find A = −440.987 meV, B = 150.546 meV, and C =
50.6794 meV.

FIG. 2. (Color online) Energy as a function of M calculated
according to Eq. (41). We fit both the fourth- and sixth-order
Landau expansion coefficients to the data. Although the fourth-order
expansion already reproduces the overall shape of the curve fairly
well, the sixth-order expansion provides a much better fit to the
curvature near the minimum energy point.

We note that the procedure described above is one
of the many possible ways of extracting the ex-
change parameter52,57–59 and coefficients of the Landau
expansion33,49,60 from the ab initio data. For example, the
Landau expansion is not exact, although it approximates
the electronic structure effects reasonably well. The profile
of the DOS can also change due to the finite temperature
effects. Here, we assume that the electronic structure at finite
temperatures remains similar to that characterizing the ground
state of the material. We also note that noncollinear fluctuations
of magnetic moments associated with the Heisenberg term also
modify the shape of the energy versus magnitude of magnetic
moment curve. Below, we explore this effect using numerical
simulations. A detailed discussion of this point can also be
found in Ref. 48.

Examination of electronic band structure shows that the
magnitude of magnetic moment is constrained from above,
unless there are excitations with energy larger than the band
gap. At the same time, the Landau expansion does not impose
an upper limit on the magnitude of magnetic moment. Hence
the Landau expansion overestimates the amount of phase space
available for fluctuations of moments. However, it does not
have a significant impact on the studies performed in this
paper, since the range of temperatures of interest is very small
in comparison with the electronic bandwidth.

B. Equilibrium data

Simulations were performed using cubic cells with 16 000
spins on bcc lattice. We performed simulations with and
without LFs, using Eqs. (13) and (18), respectively. Thermal
equilibrium energies per spin corresponding to various tem-
peratures are plotted in Fig. 3. The fact that the reference
energies at 0K differ is due to the Landau term, and is
immaterial, whereas the variation of energy as a function of
temperature is significant, since it is related to the slope of the
curves, which represents the specific heat. By means of
numerical differentiation we find the values of the specific
heat C = ∂〈E〉/∂T plotted in Fig. 4.

FIG. 3. (Color online) Thermal equilibrium energies per spin
for bcc iron plotted as a function of temperature. Simulations were
performed using Eq. (13) or (18), including or neglecting the effect
of longitudinal fluctuations.
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FIG. 4. (Color online) Specific heat of bcc iron vs temperature.
This quantity is evaluated by performing numerical differentiation
of data shown in Fig. 3. The peaks correspond to the Curie
temperatures TC (which differ depending on whether or not the effect
of longitudinal magnetic fluctuations is taken into account).

Abrupt changes in the slope of the curves in Fig. 3 are
responsible for the peaks shown in Fig. 4. They correspond
to the Curie temperatures TC , which are the temperatures at
which the long-range magnetic order, and macroscopic magne-
tization, vanishes. Magnetization per atom versus temperature
is plotted in Fig. 5. The calculated value of TC for iron, with
LFs included, is 950 K, whereas the same quantity calculated
without taking LFs into account is 1050 K. For comparison,
the experimental value of TC is 1043 K.

Both calculated values for the Curie temperature are in
reasonable agreement with observations, and simulations show
that longitudinal fluctuations of magnetic moments reduce this
temperature. This result differs from the earlier analysis by
Ruban et al.20 where it was found that the occurrence of LFs
increases the TC . It is possible that the increase of TC noted in
Ref. 20 may be due to the terms included for maintaining the
global magnetization of the material. These terms bring the
calculated value of TC for nickel closer to observations.

FIG. 5. (Color online) Magnetization of bcc iron vs temperature.
Magnetization vanishes at the Curie temperature TC .

The spin dynamics simulations discussed here do not
include quantum fluctuation effects. Hence the specific heat
does not vanish at T = 0 K. If LFs are taken into account in
simulations, the specific heat at zero temperature approaches
1.5kB , compared to 1kB in the limit with no LFs. At high
temperatures, the specific heat of the spin system exhibiting
LFs approaches 0.5kB , and does not vanish, as it does in a
model where LFs are absent. The difference of 0.5kB between
the specific heat values found for the two cases is entirely due to
the extra longitudinal degree of freedom included in the three-
dimensional spin dynamics described by Eqs. (18) and (19).
Indeed, a spin system exhibiting LFs is able to absorb energy
at arbitrarily high temperatures. On the other hand, if the spins
have only the rotational (transverse) degrees of freedom, they
cannot absorb energy once the system reaches the maximum-
entropy fully disordered high-temperature configuration. This
finding agrees with the results by Lavrentiev et al.,18,51 who
performed classical equilibrium Monte Carlo simulations
of high-temperature magnetic excitations in iron and iron-
chromium alloys using the magnetic cluster expansion.

Figure 6 shows the average value and the standard deviation
of the magnitude of magnetic moments |Mi | calculated taking
into account LFs at various temperatures. The average moment
decreases from 2.2μB at 0 K to about 2.04μB at TC . This

FIG. 6. The average value and the standard deviation of the
magnitude of an atomic magnetic moment plotted as functions of
temperature.
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FIG. 7. (Color online) Histogram showing the distribution of the
magnitude of magnetic moments at 800, 1000, and 1200 K computed
for a simulation cell containing 16 000 spins.

can be interpreted as an anharmonic effect resulting from the
asymmetry of the Landau energy well (see Fig. 2), combined
with the perturbation resulting from the Heisenberg term. The
standard deviation of the moment increases monotonically as
a function of temperature. The fact that the atoms retain their
magnetic moment above TC is consistent with neutron scatter-
ing experiments,61–65 which show that short-range magnetic
order does not vanish above TC . The increase of the average
magnitude |Mi | of the moment beyond TC is comparable
with the earlier findings by Hasegawa et al.50 and Lavrentiev
et al.51 and differs somewhat from the results by Ruban et al.20

In Ref. 20, the authors discovered a slight (0.1μB ) overall
reduction in the magnitude of the magnetic moment in the
temperature range from TC to 1500 K, whereas we find that the
magnitude of the moment increases by approximately 0.01μB

over the same temperature interval. The difference is genuinely
minor, and it illustrates the significance of using accurate
values of the Landau expansion coefficients in Eq. (42).
Figure 7 shows that the increase of the average value of |Mi |
at high temperature is associated with the fact that more local
moments have larger magnitude, with some moments having
magnitudes in excess of 2.5μB . The distribution of moments
is similar to the distribution found in Ref. 20.

C. Thermalization process

The advantage offered by spin dynamics simulations
over equilibrium Monte Carlo simulations using the same
Heisenberg-Landau Hamiltonian21,51 is that instead of treating
only the equilibrium magnetic properties of the material,
we are now able to follow the dynamics of thermalization
process at the microscopic level, including the investigation of
dynamics of equilibration of the spin system and its response to
thermal excitations. We simulate the time-dependent transient
relaxation of large interacting spin systems to equilibrium
starting from ferromagnetic ground states. All the simulations
were performed assuming the value of the damping parameter
γs = 8 × 10−3, which was found by fitting simulations to laser
pulse induced demagnetization experimental data on iron thin

FIG. 8. (Color online) Total magnetization as a function of time
simulated for a transient process of relaxation to thermal equilibrium.
All the simulations were performed starting from ferromagnetic
ground states.

films.66,67 According to Eq. (28), this value of γs corresponds
to γ ′

s = 5.88 × 1013 eV−1s−1.
Figure 8 shows the evolution of magnetization as a function

of time. Simulations show that at low temperatures, the
characteristic thermalization timescale is not very sensitive
to whether or not LFs are included in the model. However, as
the temperature approaches TC , LFs start playing a significant
part, accelerating thermalization. This can be interpreted as a
phase space effect where in the absence of LFs the dynamics
of equilibration involves evolution of spin vectors constrained
to a hypersurface in the spin space, where the instantaneous
position of each spin is constrained to the surface of its own
sphere. If LFs are present, the spin vectors are able to explore
the entire three-dimensional spin space, and the system is able
to attain equilibrium over a much shorter interval of time.

In dynamic spin simulations, we can monitor the instan-
taneous temperature of the system during the thermalization
process. In Ref. 8, we derived an expression for dynamic spin
temperature, which only applies if LFs are absent. In what
follows, we refer to that temperature as the temperature for
the rotational (transverse) degrees of freedom of atomic spins.
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FIG. 9. (Color online) Temperatures evaluated using Eqs. (34)
and (43) as functions of time during the thermalization process, with
thermostats set at 300 K (upper) and 1000 K (lower).

The expression for the rotational temperature has the form8

TR =
∑

i |Si × HRi |2
2kB

∑
i Si · HRi

, (43)

where HRi = −∂HR/∂Si . A more general expression for
dynamic spin temperature, given by Eq. (34), also includes
the effect of longitudinal fluctuations. Rigorously speaking,
Eqs. (34) and (43) are only valid if a system is at perfect
equilibrium. However, in dynamic simulations, we can still use
those equations in order to monitor temperature as a function
of time for transient nonequilibrium configurations, similarly
to how temperature is monitored in conventional molecular
dynamics simulations through the average squared velocity of
atoms.

Figure 9 shows how temperatures evaluated using Eqs. (34)
and (43) vary for cases where LFs were/were not included in
the treatment of thermalization, with thermostats set at 300
and 1000 K. Similarly to the curve showing the transient
variation of magnetization for a system interacting with a
thermostat at 1000 K, relaxation of TR in the case where LFs
were not included in simulations occurs over a much longer
period of time than in the case where LFs were included.
Moreover, we see that temperature T defined by Eq. (34)

attains the equilibrium value much quicker than TR in the
case where LFs were included. This shows that the rate of
absorption of energy through intersite spin-spin correlation is
lower than the rate of absorption involving all the degrees of
freedom of the system, confirming that on-site longitudinal
fluctuations of moments play an important part in this
process.

As a final remark, we note that GLSD can be readily incor-
porated into spin-lattice7 or spin-lattice-electron dynamics66

simulation frameworks, provided that fixed values of param-
eters Jij , A, B, and C are replaced by functions of atomic
positions {Ri}. In the case of spin-lattice-electron dynamics,
the electron-spin heat transfer coefficient Ges can be found
by following a procedure similar to that described in Ref. 66.
We differentiate Eq. (35) with respect to time, and evaluate
ensemble average with the help of the Furutsu-Novikov
theorem.68–71 Assuming that the amplitude of fluctuations is
solely determined by the temperature of an external thermostat
Te, meaning that μ′

s = 2kBγ ′
s Te, we arrive at

d〈E〉
dt

= kBγ ′
s

∑
i,α

〈
∂2H
∂S2

iα

〉
(Te − T ). (44)

By comparing Eq. (44) with the heat transfer equation for
electrons, including coupling to the spin subsystem, that is,

Ce

dTe

dt
= Ges(Ts − Te), (45)

we find that Ges = kBγ ′
s

∑
i,α〈∂2H/∂S2

iα〉. This shows that we
can safely replace the sLL equation used in the spin-lattice-
electron dynamics simulation method by the generalized
Langevin spin equation of motion.

IV. CONCLUSIONS

We develop and prove the validity of a new form of
Langevin spin dynamics. We call it generalized Langevin spin
dynamics as it includes the treatment of evolution of both trans-
verse and longitudinal magnetic degrees of freedom of atoms.
The method does not impose a constraint on the magnitude of
atomic spins (or, equivalently, the atomic magnetic moment),
unlike the conventional Langevin spin dynamics, based on
stochastic Landau-Lifshitz equations, which constrains the
motion of atomic spins to two-dimensional spherical surfaces.
Longitudinal degrees of freedom of moments can now be
treated on the same footing as their transverse (rotational)
degrees of freedom. The generalized Langevin spin equations
of motion transform into the conventional equations of spin
dynamics if the longitudinal degrees of freedom are pro-
jected out of the evolution equations. Simulations, illustrating
applications of the method, use iron as an example, where
transverse and longitudinal degrees of freedom are described
by a suitably parameterized Heisenberg-Landau Hamiltonian.
Using the new approach, we evaluate the equilibrium value
of energy, specific heat and the distributions of magnitudes
of magnetic moments, and explore the dynamics of spin
thermalization, which all appear compatible with the known
simulations and experimental observations.
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