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Abstract. It is shown that drift wave plasma turbulence in the electromagnetic
regime can significantly affect the zonal flow dynamics and drive zonal fields. A
new interpretation of the effect of the zonal fields on the zonal flow stability is
given as previous analytic predictions are shown to be inadequate for accurately
describing the numerical results. The zonal flow/field excitation mechanism in
the electromagnetic regime can provide a possible explanation for the observed
correlation between transport barrier formation and low shear rational surfaces
in the plasma.
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1. Introduction

Inhomogeneous laboratory and space plasmas are naturally prone to turbulence and
self-organization, which often lead to the formation of long living, mesoscale structures.
Examples are the solar and terrestrial dynamo mechanism, the Jovian belts, or
the zonal flow and Internal Transport Barrier (ITB) formation in magnetic fusion
devices. The complex interplay between these coherent structures and the turbulent
fluctuations determines the relevant transport of particles and energy in the plasma [1].
As a consequence, the understanding of the mechanism leading to these phenomena
is of central importance for the development of a reliable experimental fusion reactor,
where the confinement of particles and energy must be extremely efficient.

In this paper, we investigate a particular case, occurring in toroidal experimental
fusion devices, which is a paradigm for this mechanism. We present a detailed study
of the formation of poloidally and toroidally symmetric band-like structures in the
electric and poloidal magnetic field from a turbulent bath of drift waves. These
perturbations induce a non-coherent shear in the fields which typically varies on
spatial and temporal scales which are intermediate between the turbulence and the
equilibrium, and are usually referred to as ”zonal”. On the other hand, this very shear
is responsible for the stabilization of the turbulence and a reduction of the transport.
Our main focus is the investigation of the well documented zonal flows (the electric
field perturbation leads to E×B drifts, and therefore to a flow) and of the less studied
zonal fields (the magnetic field perturbations) as the plasma becomes more and more
electromagnetic.

While considerable literature has been devoted to the electrostatic limit of
the zonal flows (see [1] and references therein), the study of their electromagnetic
version is relatively recent, so that the first experimental observation of zonal fields
was reported only fairly recently [2] (for examples from numerical simulations, see
[3, 4]). Nevertheless, the problem has a great practical interest since improved
energy confinement, which implies a more electromagnetic plasma, would be beneficial
for next step tokamaks. More generally, a better theoretical understanding of the
mechanism of generation of the zonal fields could also shed some light on the still
unresolved problem of dynamo formation in astrophysical objects and laboratory
plasmas. First attempts to extend the zonal flow theory to the electromagnetic regime
were made by Chen et al [5] and by Guzdar et al [6, 7] using kinetic and fluid theory,
respectively. In these references, the analysis is based on a coherent modulational
theory (parametric instability) which assumes a narrow spectrum for the turbulence.
Within this model, the zonal perturbation is generated through a four wave interaction
which couples it to a single finite amplitude Drift-Alfven wave, called the ”pump” wave,
and two sidebands. These analytic calculations employed perturbative expansions
which relied upon the assumption of a time scale separation between the pump wave
and the zonal fields. Our mathematical approach follows those in [6, 7]. However, we
have identified some approximations in the original perturbative technique which led
to quantitatively different predictions in some parametric domains, as a comparison
with our numerical solution shows. Furthermore, our model includes the effect of finite
electron inertia, previously neglected in similar fluid calculations.

Finally, we propose a new interpretation of the formation of self-sustained zonal
flows, which in our model can occur even in presence of small β in the neighbourhood of
a low shear rational surface. Indeed, our critical transition parameter is proportional to√
β and inversely proportional to the parallel wavelength of the fluctuations, k∥. This
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latter feature is of extreme importance as in the vicinity of a low shear rational surface
the smallness of k∥ compensates that of

√
β. Therefore, in these special locations,

the transition parameter can be extremely large and can easily exceed the critical
transition threshold of order unity. This observation (which despite its simplicity is
not present in previous similar works) can provide a theoretical justification for the
puzzling experimental correlations between ITBs and resonant surfaces [8].

2. Model

Our study relies on a reduced Drift Fluid model which is well suited to describe the
behaviour of a quasi-neutral plasma in a large aspect ratio tokamak with weak flows
and temperature gradients (Te ∼= const, Ti ∼= 0) and small but finite β (the ratio
between kinetic and magnetic pressure). For the sake of simplicity, we restrict our
attention to a slab configuration. Although the geometry is likely to play a role in
determining the details of the zonal perturbations, we believe that it does not modify
our overall picture. Another key approximation is the assumption that the magnetic
shear is extremely small, so that the parallel component of the wave vector can be
assumed roughly constant. Our model employs an ideal and reduced version of the
normalized fluid equations described in [9]:

∂U/∂t+ [ϕ,U ] = [J, ψ] +
∂J

∂z
, (1)

∂χ/∂t + [ϕ, χ] +
∂ϕ

∂z
= [n, ψ] +

∂n

∂z
, (2)

∂n/∂t + [ϕ, n] = ρ2
(
[J, ψ] +

∂J

∂z

)
. (3)

with χ = ψ − d2e∇2
⊥ψ and de the collisionless skin depth.

Three normalized fields are evolved: the density, n, the electric potential, ϕ,
and the magnetic flux, ψ. The normalized magnetic field can be represented as:
B = ez − ez × ∇⊥ψ, where ez is a unity vector along the confining magnetic field,
Bz. Assuming negligible parallel ion velocity and within a cold ion approximation,
the normalized ion velocity is given by the E × B drift, so that: V = ez × ∇⊥ϕ.
With these definitions, U = ∇2

⊥ϕ represents the plasma vorticity, while J = −∇2
⊥ψ

is the current density in the ”toroidal” direction (i.e. along ez). Finally, the
Poisson brackets are defined as: [f, g] = ∂xf∂yg − ∂xg∂yf , where x and y are the
coordinates in the ”radial” and ”poloidal” direction respectively. With this convention,
B · ∇f = ∇∥f = [f, ψ] + ∂zf , and V · ∇f = [ϕ, f ]. In all the equations above, the
coordinates are normalized with respect to a typical equilibrium length scale, L, and
the time with respect to the Alfvén time: τA = L/vA. Here, vA = Bz/

√
4πminc

is the Alfvén velocity, with nc a typical density and mi the ion mass. The fields
are normalized in such a way that only two dimensionless parameters are present in
1-3: the collisionless electron skin depth, de = c/(ωpeL), and the ion sound Larmor

radius, ρ = ρs/L = cs/(ΩL). In our notation, c is the speed of light, cs =
√
Te/mi is

the sound speed calculated with the electron temperature, ωpe = e
√
4πnc/me is the

electron plasma frequency and Ω = eBz/(mic) is the ion gyrofrequency. Finally, we
define β = 4πncTe/B

2
z .

It is appropriate to remark that the cold ion fluid description presented here is
strictly valid only for Ti ≪ Te. In the presence of warm ions, the equations would
need to be corrected with gyrofluid contributions. Our calculation therefore presents
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an implicit quantitative imprecision for small wave length, although we expect that a
more rigorous approximation would not radically change the qualitative behaviour of
the system in the regimes investigated.

3. Primary and Secondary Instabilities

We take an equilibrium characterized by the absence of flows (ϕeq = 0), with constant
density gradients in the ”radial” direction (neq = −v̂∗x) and with an homogeneous
magnetic field in the ”poloidal” direction (ψeq = −Bpx). Here v̂∗ = v∗/vA
and Bp are constants, the former representing the electron diamagnetic velocity,
v∗ = − cTe

eBzLn
, normalized to the Alfvén velocity (Ln is the length scale of the

equilibrium density gradients). As shown below, the equilibrium affects the complex
frequency of the instabilities (primary and secondary) only through the parameter

Ω∗ = (kyv∗)/(k∥vA) =
√
β

kyρs

k∥Ln
, with k∥ = k·B = kyBp+kz. It is important to remark

that Ω∗ is a dimensionless number representing the ratio between the characteristic
parallel and perpendicular time scale. This means that it is not just a simple
redefinition of β, but rather a parameter that determines the relative importance
of the Alfven and diamagnetic dynamics.

In our model, the pump (primary instability) is a wave in harmonic form:

ϕ̃ = Φ0e
iA+Φ∗

0e
−iA, where A = kxx+kyy+kzz−ω0t and the star symbol represents

the complex conjugate. The perturbed fields ñ and ψ̃ have a similar structure. The
dispersion relation for this perturbation is obtained using the linearized version of the
system 1-3:

(1− Ω0)(1− Ω2
∗Ω

2
0)− Ω0R2

⊥(1− δ2Ω2
0Ω

2
∗) = 0 (4)

where Ω0 = ω0/(v̂∗ky), R⊥ = ρk⊥, δ = de/ρ and k2⊥ = k2x + k2y. The three solutions
of this equation represent a Drift Wave (DW) coupled with two Kinetic Alfvén Waves
(KAW). As the parameter Ω∗ is increased, the standard electrostatic regime gives
place to a regime in which the DW is strongly coupled with the KAWs and acquires
an electromagnetic component. For Ω∗ around unity, the DW replaces one of the
KAW and vice versa, through a mode conversion process. Finally, we remark that
N0 = (Ω−1

0 −R2
⊥)Φ0 and Ψ0 = Ω0Ω∗Φ0 complete the description of the pump (they

will be needed in the derivation of the secondary instability).
The secondary instability, which occurs when the pump wave reaches a finite

amplitude, is taken in the following form: ϕ̃ = ϕse
iB + ϕ−e

i(B−A) + ϕ+e
i(B+A) + c.c.,

with B = Kxx− ωt. This expression contains a zonal perturbation (first term on the
RHS) and two sidebands (second and third terms on the RHS) [1]. The quantities Kx

and ω are the radial wave number and the complex frequency of the zonal perturbation.
Equations 1-3, linearized around an equilibrium that contains a finite amplitude pump
wave, yield the growth rate of the secondary mode.

After some algebra, the system can be conveniently expressed through the matrix
relation: [M ][U ] = [0], with [M ] equal to:
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

iΩ 0 0 −I−Φ̂0 I−Ψ̂0 0 I+Φ̂∗
0 −I+Ψ̂∗

0 0

0 iΩDx 0 D⊥Ψ̂0 N̂0 − D−Φ̂0 −Ψ̂0 −D⊥Ψ̂∗
0 −N̂∗

0 + D+Φ̂∗
0 Ψ̂∗

0
0 0 iΩ N̂0 −R2

xI−Ψ̂0 −Φ̂0 −N̂∗
0 RxI+Ψ̂∗

0 Φ̂∗
0

R2
d

R2
−

Φ̂∗
0 −

R2
d

R2
−

Ψ̂∗
0 0 iΩ− iΩ

−1
∗ 0 0 0 0

−D⊥Ψ̂∗
0 −(N̂∗

0 − DxΦ̂∗
0) Ψ̂∗

0 iΩ
−1
∗ i(Ω−D− + 1) −iΩ

−1
∗ 0 0 0

−N̂∗
0 R2

dΨ̂∗
0 Φ̂∗

0 i −iR2
−Ω

−1
∗ iΩ− 0 0 0

−
R2

d
R2

+

Φ̂0
R2

d
R2

+

Ψ̂0 0 0 0 0 iΩ+ −iΩ
−1
∗ 0

D⊥Ψ̂0 N̂0 − DxΦ̂0 −Ψ̂0 0 0 0 −iΩ
−1
∗ i[Ω+D+ − 1] iΩ

−1
∗

N̂0 −R2
dΨ̂0 −Φ̂0 0 0 0 −i iR2

+Ω
−1
∗ iΩ+



(5)

and [U ] = [ϕs, ψs, ns, ϕ−, ψ−, n−, ϕ+, ψ+, n+]
T . We have defined Ω = ω/(v̂∗ky),

Ω± = Ω ± Ω0, ε = kx/Kx, Φ̂0 = Φ0Kx/v̂∗ (same normalization for N̂0 and Ψ̂0),
Rx = ρKx, I± = (1± 2ε), R2

± = R2
xI± +R2

⊥, R2
d = R2

x −R2
⊥ and Da = (1 + δ2R2

a)
with a standing for x, ± or ⊥. The coefficients in 5 depend on six parameters: R⊥,
δ, Ω∗, Rx, ε and Φ̂0. The first three parameters directly affect the frequency of the
pump (cf. 4), while the whole set determines the stability of the secondary instability,
as its dispersion relation is given by the characteristic equation of the matrix. It can
be easily proved that three of the nine roots of this equation correspond to Ω = 0,
while the other six can be obtained by solving the eigenvalue problem associated with
the matrix, 5. If ϵ = 0, the eigenvalues can be paired in three couples of complex
conjugates.

4. Zonal perturbations in the Electromagnetic case

It is important to stress that in the presence of electromagnetic perturbations, the
definition of a zonal perturbation is ambiguous. Indeed, it could refer to ky = kz = 0
perturbations in the original magnetic coordinates, [ψeq(x), y, z], or in those perturbed
by the pump, [ψ(x, y, z), y, z]. We adopt the former definition, which corresponds to
assume that the pump does not change the flux surfaces too much, i.e. the quenching
of the actual cross-field and of the old ”radial” transport are similar.

While for weak primary instabilities the choice of one definition or the other does
not significantly affect the understanding of the zonal flows and density, it can be
extremely misleading when it comes to the zonal fields. Indeed, using the second
definition, zonal fields can only be generated if Ohm’s law contains terms that violate
the frozen-in law. An example of these terms are those proportional to de. Crucially,
only the second definition is relevant when discussing the effect of the zonal fields on
current driven instabilities such as the tearing modes, because these depend on dJ/dψ
rather than dJ/dx.

Thus, the new terms proportional to δ qualitatively change the behaviour of the
system. The generation of zonal fields in Refs.[6, 7] and in our reference case (see
below) should therefore be considered as an artefact of the procedure, and carry much
less practical weight that those obtained in the presence of electron inertia.

5. Reference Case and Comparison with the Theory

We start our discussion with a reference case, ϵ = δ = 0, driven by a DW pump
(which becomes a KAW at high β [10]). Figures 1(a) and 1(c) show the growth
rate, ℑ(Ωmax), and the rotation frequency, ℜ(Ωmax), of the most unstable secondary
mode as a function of Ω∗ for different values of Rx. Here the features of the pump
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Figure 1. Growth rate (a), rotation frequency (b), ψs/ϕs (c) and ns/ϕs (d) of the
most unstable secondary mode as a function of Ω∗. Crosses, circles and triangles
represent numerical solutions with Rx = 0.25, 0.5, 0.75, respectively. The solid,
dashed and dash-doted lines give a comparison with the theoretical prediction of
[6]. Here δ = ϵ = 0, R⊥ = 0.25 and Φ̂0 = Rx.

(the background turbulence) are held fixed: R⊥ = 0.25 and Φ̂0 = Rx (equivalent to
Φ0e/Te = ρs/Ln in dimensional units). The markers represent numerical solution of
the eigenvalue problem associated with the matrixM (Rx = 0.25, 0.5, 0.75 for crosses,
circles and triangles, respectively). Figures 1(b) and 1(d) describe the amplitude of
the zonal field, ψs, and of the zonal density, ns, relative to the amplitude of the
zonal flow, ϕs. As Ω∗ approaches unity, both amplitudes are growing and become
comparable to ϕs. The theoretical predictions of (10) in [6], shown in Figure 1(a) for
comparison, are in reasonable agreement with the numerical data at extremely small
Ω∗ (i.e in the electrostatic limit) or Rx. However, the theoretical model is not able to
give a correct quantitative description of the branches of the secondary instability that
appear at medium and large Ω∗, with errors well above 100% [see the bottom right
part of Fig.1(a)]. Furthermore, the roots of (10) in [6] can only be purely real or purely
imaginary, while our results clearly show that the eigenvalue is in general a complex
number, the real part of which is significant for Ω∗ ∼ 1 (i.e. in the electromagnetic
regime).
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This disagreement can be explained by noting that, given a generic matrix A as a
function of a parameter λ, the determinant of the series expansion in λ of A equals the
series expansion in λ of the determinant of A if, and only if, both series are truncated
at the same order. That is:

det[Ai,j(λ)] = det[A
(0)
i,j +A

(1)
i,j λ+ · · ·+A

(n)
i,j λ

n +O(λn+1)]

= D(0) +D(1)λ+ · · ·+D(n)λn +O(λn+1). (6)

The calculation presented in [6, 7] is equivalent to a reduction (by substitution of
variables) of the matrix M , 5, to a 4 × 4 matrix, the coefficients of which contain
terms of order Ω3. The coefficients of this matrix are then expanded and their series
are truncated at order Ω but the determinant (the dispersion relation) is evaluated
at order Ω2, thus missing several relevant order terms as a consequence of the fact
that the rule (6) is not respected. Furthermore, [6, 7] assume ns = 0, which is not
an acceptable approximation, as Figure 1(d) shows. The correct expansion would
produce an extremely lengthy and complicated dispersion relation which could not
provide clear insights. As a consequence, in this paper, we focus on an extensive
numerical characterization of the system.

It is interesting to note that the finite real part of Ωmax which we obtain
corresponds to a radial shift of the zonal structure and therefore of the velocity shear
associated to it. If the time scale of this displacement is comparable or faster than an
eddy turnover time, the zonal flow is less effective in quenching the turbulence [11].
This is due to the fact that the velocity shear pattern moves away before it is able
to decorrelate the turbulent structure. In our model, we estimate the eddy turnover
time as τeddy ≈ Ln/cs, which implies that the effect of the zonal flows is significantly
reduced if |ℜ(Ωmax)| ∼ (kyρs)

−1. In our calculation both (kyρs) and |ℜ(Ωmax)| are
smaller than unity [see Fig.1(c)], hence the radial motion of the zonal pattern is not
sufficiently fast to lose effectiveness in quenching turbulence.

Figure 2 describes the stability of the system as the dimensionless parameters
are varied. While at large R⊥ the secondary perturbation is generally growing, at
smaller R⊥ two separated regions of instability can be identified. One corresponds to
the electrostatic branch, which occurs at small Ω∗ and for which ψs/ϕs is small. On
this branch, increasing Ω∗ reduces the growth rate of the instability. The opposite
behaviour, which leads to positive feedback on the pressure and transport barrier
formation [6], is observed in the second region, located at large Ω∗ and Rx. Here
the perturbation is electromagnetic, i.e. ψs/ϕs is significant (and so is ns/ϕs), see
also Figure 1(c)-(d). We find that on this branch ℑ(Ωmax) grows indefinitely as Rx

is increased (approximatively as R2
x). If sufficiently strong dissipative mechanisms

are taken into account, the growth rate eventually reaches a maximum for a certain
Rx and then decreases toward zero. If the maximum is at Rx larger than unity,
the calculation would require kinetic corrections. In any case, within our model this
prevents a clear identification of the maximum ℑ(Ωmax) (with respect to Rx) as a
function of Ω∗ [6, 7, 12].

Figure 2 also shows that the electromagnetic branch can be destabilized only if
Ω∗ exceeds a value which roughly corresponds to β & (k∥Ln)

2. This condition is
typically hard to achieve in the whole plasma by just increasing the pressure (i.e.
β). Indeed, k∥ = (qn − m)/(qR) and if Ln is of the order of the minor radius, a β
larger than 5%-10% would be required (q is the safety factor, R the major radius,
m and n the poloidal and toroidal mode numbers). On the other hand, close to a
resonant surface where q = m/n all the perturbations with the right helicity have
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Figure 2. Isocontours of ℑ(Ωmax) as a function of Rx, R⊥, Ω∗ and Φ̂0 = CΦRx

with CΦ = 0.25 (a), CΦ = 0.5 (b), CΦ = 1 (c) and CΦ = 1.5 (d). The thick black
lines mark ℑ(Ωmax) = 0, within them ℑ(Ωmax) > 0 and the darker color in (d)
corresponds to ℑ(Ωmax) = 1. δ = ϵ = 0.

vanishing parallel wave number (i.e. k∥ ≈ 0) so that the threshold is easily exceeded,
even at low β. It is important to remark that in standard toroidal configurations,
the energy of the turbulence mostly resides in modes characterised by parallel wave
numbers spanning from almost zero to once or twice 1/qR [13]. In particular, it is the
ballooning nature of the instabilities that makes k∥ ∼ 1/qR a good approximation.
However, at low shear the nature of the fluctuations changes and slab-like, k∥ ≈ 0,
modes can appear [14, 15]. In addition, electromagnetic instabilities like the micro-
tearing modes naturally show a weak ballooning behaviour even in the presence of finite
shear [16]. All these slab-like modes can provide at their resonant surface an effective
drive for the zonal perturbation. As a consequence, the model described here could
explain the generation of a transport barrier around low shear resonance surfaces (as
measured experimentally, see [17]), where zonal flows and fields are stronger. Despite
the simplicity of our argument, this interpretation was not present in previous similar
works which approximated k∥ ≈ 1/qR, therefore missing the resonant effect.
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Figure 3. (a): Isocontours of ℑ(Ωmax) as a function of Rx, δ, Ω∗. (b): ψs/ϕs as

a function of δ for different values of Ω∗ with Φ̂0 = Rx, R⊥ = 0.25 , Rx = 0.75
and ϵ = 0.

6. Finite Electron Inertia and inhomogeneous Pump

We now move to the description of the effect of finite electron inertia, δ ̸= 0
(δ = 0.25÷ 0.75 can be reached in experimental machines). As Figure 3(a) shows, the
electrostatic branch is not significantly affected by a finite value of δ [cf. Figure 2(c)].
However, the electromagnetic branch bifurcates and is damped when δ approaches
unity. Unfortunately, this means that the δ = 0 estimate of the critical Ω∗ for the
formation of a transport barrier is underestimated. On the other hand, for finite δ the
relative amplitude of the zonal field (and density) can become quite large, although its
maximum shifts at higher values of Ω∗ [see Figure 3(b)]. This is of great importance,
since it suggests that zonal perturbations in the proper sense (see Section 4) are indeed
generated and can affect the slope of the current density, dJ/dψ.

So far we have considered cases in which the pump is a plain wave, kx = 0,
e.g. elongated streamers. We consider now localized eddies so that the scale of
the zonal perturbation is intermediate between the equilibrium and the turbulence,
kx > Kx > 1. In Figure 4 we show how the growth rate of the perturbation varies
for different ϵ (with Φ̂0 = Rx, R⊥ = 1, δ = 0). We first remark that when ϵ > 1 the
parameter space is limited by the reality condition on ky (i.e. k2y ≥ 0), which implies
that Rx ≤ R⊥/ϵ. As a consequence, only the part of Figure 4(c)-(d) below the
horizontal line is meaningful. A radially inhomogeneous pump has two main effects:
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Figure 4. Isocontours of ℑ(Ωmax) as a function of Rx and Ω∗ for (a) ϵ = 0, (b)

ϵ = 1 , (c) ϵ = 2, (d) ϵ = 3. In all the cases Φ̂0 = Rx, R⊥ = 1, δ = 0.

it reduces ℑ(Ωmax) and it compresses the growth rate diagram in the Rx direction.
However, an electrostatic and an electromagnetic branch a still present, although the
excitation of the latter is pushed to larger values of Ω∗. We therefore find that small
ϵ pumps are more effective in driving the zonal perturbation. This observation is in
agreement with previous electrostatic results obtained with both Cheney-Hasegawa-
Wakatani models and ETG simulations [18], where radially elongated fluctuations were
shown to favour the generation of zonal structures. We remark, however, that our
calculation only describes the onset of the zonal perturbation, not its fully nonlinear
phase, in which the slower growing modes (large ϵ) could dominate the spectrum.

7. Criterion for ITB formation

Despite the fact that the results presented in the previous sections were obtained
in different parametric regimes, we notice that the zonal flows are self-sustained if
the local Ω∗ exceeds a threshold value of order unity. In the regions of the plasma
where this critical condition is met, intense velocity shear is therefore generated. If
the region is large enough, this is likely to lead to local turbulent suppression and
improved confinement. Starting from these considerations, in this section we apply
the zonal flow theory presented above to construct a criterion for the formation of an
internal transport barrier.

In the proximity of a resonant surface, located at a radius rs, the parallel
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wave number can be Taylor expanded, so that: k∥ = qn−m
qR

∼= s n
R

x
rs
, where

s = [rsq
′(rs)]/q(rs) is the magnetic shear and x = r − rs. We remark that this

step introduces an extrapolation of our theory since the calculations described in
the previous sections assumed constant k∥. Recalling that Ω∗ =

√
β

kyρs

k∥Ln
, we

can estimate the width of the region where the zonal perturbations are unstable:

xcr ≡ rskyρs
√
β

ns
R
Ln

. We now assume that the transport barrier forms if this width is
larger than ρs, which represents the typical length scale of the turbulent eddies. In
other words, this assumption means that the transport can be locally reduced only if
the shearing associated with the zonal flows is generated over a region large enough
to contain several turbulent eddies.

The condition xcr & ρs is equivalent to:

ρ∗M ≡
(
R

di

q

s

)
ρs
Ln

≡
√
β

a/R

a

Ln

q

s
& 1, (7)

where di = c/ωci is the ion collisionless skin depth (which depends only on the plasma
density) and a is the minor radius and we have used ky = m/rs. The left-hand side
of the relation above implies that the formation of a transport barrier is facilitated by
a low magnetic shear and by large ρs/Ln, as experimentally observed [19]. We note
that the factor qR/(sdi) is roughly constant for machines with similar density, size
and magnetic geometry.

It is useful to test this criterion to see if it can provide a qualitative prediction
for the existence of transport barriers in typical plasmas. In order to do this we have
to assume a profile for the density and for the safety factor. For the former we take
n/n(0) = (1 − r̂4), where r̂ = r/a, and for the latter we study three polynomial
configurations: (I) standard with q = 1+ 2r̂2; (II) hybrid, with low shear in the core,
q = 1 + 2r5; (III) reversed, with negative shear in the core, q = 1 − r̂2 − r̂3 + 4r̂4.
These profiles are shown in Fig.5

If we now take a typical fusion plasma, characterized by
√
β/(a/R) = 0.3, we find

that in the core region the criterion is never satisfied for a standard profile, while a
barrier is formed if the shear is low or in the case of a reversed q profile (see Fig.6).
We note that in the latter case, the barrier forms in the neighbourhood of the position
where the safety factor profile reaches its minimum, in agreement with experiment.
If the shear is low, the barrier forms in the innermost part of the plasma, likely to
be where a low n resonant surface lies. It is important to remark that the theory we
developed is expected to fail in the edge region, since there the turbulence is highly
nonlinear as a consequence of the steepness of the gradients and therefore our simple
quasilinear treatment would not be valid. Hence, the rightmost part of the plots in
Fig.6 cannot be used to predict barrier formation and should not be interpreted as an
indication of pedestal formation.

Note that the criterion 7 is a necessary condition for the formation of the barrier,
but it is not sufficient. Indeed, it only ensures that zonal perturbations are linearly
unstable, but it does not say anything about their nonlinear evolution and saturation,
which could eventually lead to the ITB. It is reasonable to expect that the barrier
is produced when a sufficient amount of energy is transferred from the turbulence
to the zonal perturbations. Our theory predicts that only the turbulent modes that
resonate within the plasma can contribute to the generation of the zonal flows. As a
consequence, when a new resonant surface enters the plasma, it carries a number of
modes that can add up and strengthen the transport barrier. It is important to notice
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Figure 5. (a) Density and (b) safety factor profiles for case (I) dash-dot line, (II)
dash line and (III) solid line.

that the low order rational surfaces have a special role in this mechanism since not all
the resonances are equivalent.

To clarify this concept it is useful to assume that the turbulent fluctuations present
in the plasma can be decomposed into N2 modes represented by the couple [m,n],
where m and n are integer wave numbers that run from 1 to N . The modes with
the same helicity, h = m/n, are a equivalence class and each helicity has Nh modes
associated to it. We define Nh = Nh/N , the density of the modes corresponding to h,
and we plot this quantity as a function of h in Fig.7. This figure does not depend on the
choice of N as long as it is sufficiently large. When a rational surface associated with a
certain q = q0 appears in the plasma the primary modes with helicity h = q0 begin to
resonate and some of them can destabilize new zonal modes. The low order resonant
helicities, however, are more efficient at this because they have a much higher Nh and
therefore their contribution is more important. Experimental studies [8] have indeed
reported that the presence of these resonances is related to the triggering mechanism
of the Internal Transport Barriers. From these considerations, we argue that in order
to have a fully developed ITB two conditions should be met: the first is the validity
of condition 7 and the second is the presence of a sufficient number of resonant modes
(i.e. a q profile possessing low order rational surfaces).
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Figure 6. Value of ρ∗M (see Eq.7) as a function of the normalized radius for (a)
the standard, (b) hybrid and (c) reversed safety factor in a typical configuration.
The dashed line represents the approximative threshold above which the barrier
is formed.

8. Conclusions

In conclusion, we have carried out a detailed study of the generation of zonal
perturbations in the density, electric and magnetic field, considered as secondary
instabilities arising in a turbulent Drift Wave bath. Our numerical study has exposed
the weaknesses of the theoretical approaches and has shed some light on the new
physics occurring when finite electron inertia and radial structure of the primary
instability are taken into account. Our new results consistently show that the
β threshold for the destabilization of the zonal flows is higher than the previous
theoretical estimates. On the other hand, we have observed that low shear resonant
surfaces play an important role in the generation of zonal perturbations, a feature that
previous similar calculations failed to recognize. Only in these special locations, the
magnitude of the zonal field and density can become significant and, at the same time,
a pressure increase could trigger a feedback mechanism leading to transport barriers.
It is important to remark that this mechanism is likely to work only for the ITBs in
the plasma core. Indeed, at the pedestal in the plasma edge our quasilinear treatment
is questionable since it was convincingly shown that fully developed edge turbulence
does not carry any resemblance of the linear structures [20, 21] (i.e. our primary
instability is not appropriate). As a consequence, neither the theory studied here
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Figure 7. Mode density Nh as a function of the helicity.

nor those developed previously [6, 7, 5] can confidently predict L-H transition. The
association between rational surfaces and zonal fields also suggests the possibility that
magnetic islands could arise as a consequence of the local change of dJ/dψ occurring
when δ ̸= 0 (see [22]). This could lead to a complex exchange of energy between the
turbulence (microinstabilities), the zonal perturbations (mesoinstabilities) and MHD
phenomena (macroinstabilities) and potentially reinforce the transport barrier [23].

Finally, in the light of the zonal flow description presented above, we have
proposed a theoretical interpretation of the reason why ITB form around low order
resonant surfaces. Our model predicts that the zonal flows are easily destabilized
around rational surfaces even at low β. However, in order to have robust shear flows
that can tear the eddies apart, the transition parameter Ω∗ has to cross a critical
threshold in a sufficiently large region around the resonant surface (of the order of the
turbulence correlation length). In order to do that, the magnetic shear has to be low.
Furthermore, low order rational surfaces are favoured in this process since in these
locations a larger number of modes resonates and therefore can transfer their energy
from the turbulence to the zonal perturbations.
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