Twoaxis goniometer for reflectivity measurements of xray diffractors used in fusion research (abstract)

Citation: Rev. Sci. Instrum. 66, 529 (1995); doi: 10.1063/1.1146339
View online: http://dx.doi.org/10.1063/1.1146339
View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v66/i1
Published by the American Institute of Physics.

Related Articles
Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source

A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion

Near-coincident K-line and K-edge energies as ionization diagnostics for some high atomic number plasmas
Phys. Plasmas 19, 102705 (2012)

X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser

Time-resolved soft x-ray spectra from laser-produced Cu plasma

Additional information on Rev. Sci. Instrum.
Journal Homepage: http://rsi.aip.org
Journal Information: http://rsi.aip.org/about/about_the_journal
Top downloads: http://rsi.aip.org/features/most_downloaded
Information for Authors: http://rsi.aip.org/authors

ADVERTISEMENT

Explore AIP’s open access journal:
- Rapid publication
- Article-level metrics
- Post-publication rating and commenting
Two-axis goniometer for reflectivity measurements of x-ray diffractors used in fusion research (abstract)\(^a\)

N. J. Peacock, R. Barnsley,\(^b\) A. Patel, M. O'Mullane,\(^c\) M. Singleton,\(^d\) and J. Ashall

UKAEA (Government Division, Fusion) (Euratom/UKAEA Fusion Association), Culham Laboratory, OX14 3DB, United Kingdom

(Presented on 10 May 1994)

Quantitative measurements of the line and continua emissivities and the analyses of spectral line profiles are essential steps in the interpretation of the x-ray emission from high-temperature fusion plasmas. One method of placing the emissivities on an absolute basis is to use an absolutely calibrated spectrometer to record the data. The overall sensitivity of the spectrometer can be constructed in terms of the efficiencies of its separate components, the most intractable being \(R_c \), the reflection integral of the diffractor. To this end, a new, compact, two-axis diffractometer, incorporating modern robotic technology, such as direct-drive servomotors with closed-loop operation from built-in arcsec optical encoders, has been constructed. Improved features of this double-axis goniometer include the use of fixed line-of-sight x-ray sources with the capability of operation in the \((l, -l)\) parallel, nondispersive mode or the antiparallel, \((l, +l)\), dispersive mode. The diffractometer is now being used to calibrate x-ray diffractors, filters, mirrors, and detectors associated with x-ray spectroscopy of fusion plasmas. At certain wavelengths, where line branching ratios involving visible transitions are available, the fusion plasma may itself be used as a transfer standard of x-ray luminosity, allowing an independent check on the diffractometer values of \(R_c \). Applications to the analyses of impurity concentrations in tokamaks are described while future applications of the diffractometer to radiation damage studies of x-ray and optical components [Hill \textit{et al.}, Rev. Sci. Instrum. 63, 5032 (1992)] used in D-T burning plasma experiments are envisaged.

\(^a\)The full length version of this paper will be published in Rev. Sci. Instrum. 66 (February 1995).
\(^b\)Department of Physics and Astronomy, Leicester University, LE1 7RH U.K.
\(^c\)University College, Cork, Ireland.