JAEA FNS decay Heat experiment revisited with EAF-2005.1

J-Ch Sublet

CEA Cadarache, DEN/DER/SPRC,
13108 Saint Paul Lez Durance,
France
Integral experiments

JAEA Fusion Neutron Source (FNS)

- 14 Mev neutron generated by a 2 mA, 350 KeV Deuteron beam (80 degree line) impinging on a stationary tritium-bearing titanium target:
 \[\approx 1.0 \times 10^{10} \text{n/cm}^2\cdot\text{s} \] on small samples

- 32 samples irradiated (5 Min. and 7 Hours) -1996
 - Cooling times from 1 Min. - 1 Hour and 1 Hour – 400 days
 - Analysed with EAF-97 and FENDL/A-2.0, \(\Rightarrow \) EAF-99/2001

- 73 samples irradiated (5 Min.) –1998-99
 - Cooling times from 30 Seconds – 1 Hour
 \(\Rightarrow \) short half life isotope measurements
 - 10 hours and 180 hours irradiations have been performed as well on all samples (but not processed, analysed yet)
 - Masses from 4 to 100 mg
 - Metallic foil, metallic powder, oxide, carbonate, carbide, dioxide..
 - Analysed with EAF-99/2001 \(\Rightarrow \) EAF-2003=JEFF-3.0/A
FNS Neutron Spectra

Four different irradiation positions

Neutron fluence monitored by $^{27}\text{Al} \ (n,\alpha)\text{Na}^{24}$

< 1 Kev High Standard Deviation
Irradiated Materials

<table>
<thead>
<tr>
<th>Z</th>
<th>Element</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>F</td>
<td>CF2</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>Na2CO3</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>MgO</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>P3N5</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>Powder</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>C2H2Cl2</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>K2CO3</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>CaO</td>
</tr>
<tr>
<td>21</td>
<td>Se</td>
<td>Se2O3</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>Ga2O3</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>GeO2</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>As2O3</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>BrC6H4COOH</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>Rb2CO3</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>SrCO3</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>Y2O3</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>SnO2</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>TeO2</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>IC6H4OH</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>Cs2CO3</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>BaCO3</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>La2O3</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>CeO2</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>Pr6O11</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>Nd2O3</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>Sm2O3</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>Eu2O3</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>Gd2O3</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>Tb4O7</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>Dy2O3</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>Ho2O3</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>Er2O3</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>Tm2O3</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>Yb2O3</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>Lu2O3</td>
</tr>
<tr>
<td>72</td>
<td>Hf</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>73</td>
<td>Ta</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>74</td>
<td>W</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>75</td>
<td>Re</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>76</td>
<td>Os</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>77</td>
<td>Ir</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>78</td>
<td>Pt</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>79</td>
<td>Au</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>81</td>
<td>Ti</td>
<td>Ti2O</td>
</tr>
<tr>
<td>82</td>
<td>Pb</td>
<td>Metallic Foil</td>
</tr>
<tr>
<td>83</td>
<td>Bi</td>
<td>Metallic Powder</td>
</tr>
<tr>
<td>Alloy SS-304</td>
<td>Metallic Foil</td>
<td></td>
</tr>
<tr>
<td>Alloy SS-316</td>
<td>Metallic Foil</td>
<td></td>
</tr>
<tr>
<td>Alloy NiCr</td>
<td>Metallic Foil</td>
<td></td>
</tr>
<tr>
<td>Alloy Inc600</td>
<td>Metallic Foil</td>
<td></td>
</tr>
</tbody>
</table>

Foil samples 25x25 mm2
Powder sandwiched by adhesive tape of 24x24 mm2

73 Different materials
7 Hours irradiation; hrs to 400 days cooling times

-For 28 Materials

always better with EAF-05 and/or within the experimental uncertainty
5 Min. irradiation; sec. to one hour cooling time
Dominant radionuclide and pathways analysis

<table>
<thead>
<tr>
<th>Dominant path</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>O16(n,p)N16</td>
<td>99.9%</td>
</tr>
<tr>
<td>K39(n,2n)K38</td>
<td>100%</td>
</tr>
<tr>
<td>K39(n,2n)K38m</td>
<td>100%</td>
</tr>
<tr>
<td>K39(n,2p)Cl38m</td>
<td>16.3%</td>
</tr>
<tr>
<td>K41(n,a)Cl38m</td>
<td>83.4%</td>
</tr>
<tr>
<td>K39(n,2p)Cl38</td>
<td>2.9%</td>
</tr>
<tr>
<td>K41(n,a)Cl38</td>
<td>68.0%</td>
</tr>
<tr>
<td>K39(n,2p)Cl38m(IT)Cl38</td>
<td>4.7%</td>
</tr>
<tr>
<td>K41(n,a)Cl38m(IT)Cl38</td>
<td>24.3%</td>
</tr>
</tbody>
</table>
5 Min. irradiation; K38 T½ 7.610 minutes

EAF-2005 XS TALYS-5; ADJUST
K39(n,2n)K38 6.324E-03±2.0E+01%
K 39(n,2n)K38m 1.174E-03±4.0E+01%

EAF-2003 XS ADL-3; DEL
K39(n,2n)K 38 4.904E-03±2.0E+01%
K39(n,2n)K 38m 1.208E-03±4.0E+01%

+28% ??? on group averaged XS ??

Both decay data from ukpadd6.3 ??

It requires a deeper level of investigation
5 Min. irradiation; sec. to one hour cooling time
Ga74; $T_{1/2}$ 8.117 minutes

Comparison of XS Data

EAF-2005 XS
- Ge74(n,p)Ga74: $1.268E-02\pm6.3E+01\%$
- Ge74(n,p)Ga74m: $5.695E-03\pm6.3E+01\%$

EAF-2003 XS
- Ge74(n,p)Ga74: $6.621E-03\pm6.3E+01\%$
- Ge74(n,p)Ga74m: $2.974E-03\pm6.3E+01\%$

+91% not justified, even by differential data.
5 Min. irradiation; sec. to one hour cooling time
Mo91; $T_\frac{1}{2}$ 15.49 m

EAF-2005 IEAF-2001; EXP
Mo92(n,2n)Mo91 2.611E-01±2.0E+01%
Mo92(n,2n)Mo91m 3.640E-02±2.0E+01%

EAF-2003 ADL-3; EXP
Mo92(n,2n)Mo91 1.895E-01±2.0E+01%
Mo92(n,2n)Mo91m 2.555E-02±2.0E+01%

+37% on the ground; not backup by integral data
Mo91; T½ 15.49 m

XS on isomer is however, better in EAF-2005
5 Min. irradiation; sec. to one hour cooling time
W186; $T_{\frac{1}{2}}$ 3.7 days

Abundance Re-185 37.4%, Re-187 62.3%

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (eV)</th>
<th>Cross section (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAF-2005</td>
<td>0.0E+00</td>
<td>5.0E+06</td>
</tr>
<tr>
<td></td>
<td>5.0E-01</td>
<td>9.2E+06</td>
</tr>
<tr>
<td></td>
<td>1.0E+00</td>
<td>1.3E+07</td>
</tr>
<tr>
<td></td>
<td>1.5E+00</td>
<td>1.8E+07</td>
</tr>
<tr>
<td></td>
<td>2.0E+00</td>
<td>2.2E+07</td>
</tr>
<tr>
<td></td>
<td>2.5E+00</td>
<td>2.6E+07</td>
</tr>
<tr>
<td></td>
<td>3.0E+00</td>
<td>3.0E+07</td>
</tr>
</tbody>
</table>

The (n,2n) increase is not justified
W-186; $T_{1/2}$ 3.7 days

The ground excitation is problematic
5 Min. irradiation; sec. to one hour cooling time

Ir FNS–00 5 Min. Irradiation

Heat Output [microW]

Time After Irradiation [Min]
Ir192m; $T_{1/2} = 1.4$ m

EAF-2005
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}$ 1.227E+00±2.0E+01%
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}_{m}$ 5.145E-01±2.0E+01%
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}_{n}$ 3.466E-01±2.0E+01%

EAF-2003
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}$ 1.368E+00±6.1E+01%
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}_{m}$ 2.559E-01±6.1E+01%
- $^{193}\text{Ir}(n,2n)^{192}\text{Ir}_{n}$ 1.859E-01±6.1E+01%

The total XS increase is not justified
Ir192m; $T_{1/2}$ 1.4 m

Ir-193(n,2n)Ir-192

Cross section (b)

Energy (eV)

0.0E+00 5.0E-01 1.0E+00 1.5E+00 2.0E+00 2.5E+00

5.0E+06 9.2E+06 1.3E+07 1.8E+07 2.2E+07 2.6E+07 3.0E+07

Systm
AEP94 n
JAE94 n
JUL72 g
IBJ84
IBJ79

None of the increases (g or n) seems justified
But, all the others looked like this one

Although, not as this accurate
Conclusions

- FNS 5 minutes irradiation and decay heat measurements from 30 seconds up to 1 hours cooling for 28 different materials

- FNS 7 hours irradiation and decay heat measurement from minutes up to 400 days (~13 months) for 73 different materials

 EAF-2005 would lead the pack of EAF files with only a few correction mainly due to model calculation type evolutions, thousands of them........EAF-2007 will account for those minute drawbacks
Conclusions

➢ For only very small number of excitation function (5 over hundreds) the integral experiments do not agree with:
 ➢ differential data
 ➢ expert knowledge
 ➢ model calculation

➢ It is important to repeat such type of benchmarking to ascertain data change or data evolution

➢ Subtle changes may have surprising effects

➢ It is, however, remarkable that with such a huge increase in number of channels and with the extension of the energy range to 60 Mev the overall performance of EASY-2005 has been kept at such a high and unique level